




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ReviewQuestions
12.1-1 Thedecisionalternativesaretodrillforoilortoselltheland.
12.1-2 Theconsultinggeologistbelievesthatthereis1chancein4ofoilonthetractofland.
12.1-3 Maxdoesnotputmuchfaithintheassessment.
12.1-4 Adetailedseismicsurveyofthelandcouldbedonetoobtainmoreinformation.
12.1-5 Thepossiblestatesofnaturearethepossibleoutcomesoftherandomfactorsthataffectthepayoffthatwouldbeobtainedfromadecisionalternative.
12.1-6 Priorprobabilitiesaretheestimatedprobabilitiesofthestatesofnaturepriortoobtainingadditionalinformationthroughatestorsurvey.
12.1-7 Thepayoffsarequantitativemeasuresoftheoutcomesfromadecisionalternativeandastateofnature.Payoffsaregenerallyexpressedinmonetaryterms.
12.2-1 Themaximaxcriterionidentifiesthemaximumpayoffforeachdecisionalternativeandchoosesthedecisionalternativewiththemaximumofthesemaximumpayoffs.Themaximaxcriterionisfortheeternaloptimist.
12.2-2 Themaximaxciterioncompletelyignoresthepriorprobabilitiesandignoresallpayoffsexceptforthelargestone.
12.2-3 Themaximincriterionidentifiestheminimumpayoffforeachdecisionalternativeandchoosesthedecisionalternativewiththemaximumoftheseminimumpayoffs.Themaximincriterionisforthetotalpessimist.
12.2-4 Themaximincriterionignoresthepriorprobabilitiesandignoresallpayoffsexceptthemaximinpayoff.
12.2-5 Themaximumlikelihoodcriterionfocusesonthemostlikelystateofnature,theonewiththelargestpriorprobability.
12.2-6 Criticismsofthemaximumlikelihoodcriterioninclude:1)thiscriterionchoosesanalternativewithoutconsideringitspayoffsforstatesofnatureotherthanthemostlikelyone,2)foralternativesthatarenotchosen,thiscriterionignorestheirpayoffsforstatesofnatureotherthanthemostlikelyone,3)ifthedifferencesinthepayoffsforthemostlikelystateofnaturearemuchlessthanforanothersomewhatlikelystateofnature,thenitmightmakesensetofocusonthislatterstateofnatureinstead,and4)iftherearemanystatesofnatureandtheyarenearlyequallylikely,thentheprobabilitythatthemostlikelystateofnaturewillbethetrueoneisfairlylow.
12.2-7 Bayes’decisionrulesaystochoosethealternativewiththelargestexpectedpayoff.
12.2-8 Theexpectedpayoffiscalculatedbymultiplyingeachpayoffbythepriorprobabilityofthecorrespondingstateofnatureandthensummingtheseproducts.
12.2-9 CriticismsofBayes’decisionruleinclude:1)thereusuallyisconsiderableuncertaintyinvolvedinassigningvaluestopriorprobabilities,2)priorprobabilitiesinherentlyareatleastlargelysubjectiveinnature,whereassounddecisionmakingshouldbebasedonobjectivedataandprocedures,and3)byfocusingonaverageoutcomes,expectedpayoffsignoretheeffectthattheamountofvariabilityinthepossibleoutcomesshouldhaveonthedecisionmaking.
12.3-1 Adecisiontreeisagraphicaldisplayoftheprogressionofdecisionsandrandomeventstobeconsidered.
12.3-2 Adecisionnodeindicatesthatadecisionneedstobemadeatthatpointintheprocess.Aneventnodeindicatesthatarandomeventoccursatthatpoint.
12.3-3 Decisionnodesarerepresentedbysquareswhilecirclesrepresenteventnodes.
12.4-1 Sensitivityanalysismightbehelpfultostudytheeffectifsomeofthenumbersincludedinthemodelarenotcorrect.
12.4-2 Itassuresthateachpieceofdataisinonlyoneplaceanditmakesiteasyforanyonetointerpretthemodel,eveniftheydon’tunderstandTreePlanordecisiontrees.
12.4-3 Adatatabledisplaysresultsofselectedoutputcellsforvarioustrialvaluesofadatacell.
12.4-4 Ifthereislessthana23.75%chanceofoil,theyshouldsell.Ifit’smore,theyshoulddrill.
12.5-1 Perfectinformationmeansknowingforsurewhichstateofnatureisthetruestateofnature.
12.5-2 Theexpectedpayoffwithperfectinformationiscalculatedbymultiplyingthemaximumpayoffforeachalternativebythepriorprobabilityofthecorrespondingstateofnature.
12.5-3 Thedecisiontreeshouldbestartedwithachancenodewhosebranchesarethevariousstatesofnature.
12.5-4 EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
12.5-5 Ifthecostofobtainingmoreinformationismorethantheexpectedvalueofperfectinformationthenitisnotworthwhiletoobtainmoreinformation.
12.5-6 Ifthecostofobtainingmoreinformationislessthantheexpectedvalueofperfectinformationthenitmightbeworthwhiletoobtainmoreinformation.
12.5-7 IntheGoferbrokeproblemtheEVPI>Csoitmightbeworthwhiletodotheseismicsurvey.
12.6-1 Posteriorprobabilitiesarerevisedprobabilitiesofthestatesofnatureafterdoingatestorsurveytoimprovethepriorprobabilities.
12.6-2 Thepossiblefindingsarefavorablewithoilbeingfairlylikely,orunfavorablewithoilbeingquiteunlikely.
12.6-3 Conditionalprobabilitiesneedtobeestimated.
12.6-4 Thefivekindsofprobabilitiesconsideredareprior,conditional,joint,unconditional,andposterior.
12.6-5 P(stateandfinding)=P(state)*P(finding|state).
12.6-6 P(finding)=sumofP(stateandfinding)foreachstate.
12.6-7 P(state|finding)=P(stateandfinding)/P(finding).
12.6-8 Bayes’theoremisusedtocalculateposteriorprobabilities.
12.7-1 Adecisiontreeprovidesagraphicaldisplayoftheprogressionofdecisionsandrandomeventsforaproblem.
12.7-2 Adecisionneedstobemadeatadecisionnode.
12.7-3 Arandomeventwilloccurataeventnode.
12.7-4 Theprobabilitiesofrandomeventsandthepayoffsneedtobeinsertedbeforebeginninganalysis.
12.7-5 Whenperformingtheanalysis,startattherightsideofthedecisiontreeandmoveleftonecolumnatatime.
12.7-6 Foreacheventnode,calculateitsexpectedpayoffbymultiplyingthepayoffofeachbranchbytheprobabilityofthatbranchandthensummingtheseproducts.
12.7-7 Foreachdecisionnode,comparetheexpectedpayoffsofitsbranchesandchoosethealternativewhosebranchhasthelargestexpectedpayoff.
12.8-1 Consolidatethedataandresultsintoonesectionofthespreadsheet.
12.8-2 Performingsensitivityanalysisonapieceofdatashouldrequirechangingavalueinonlyoneplaceonthespreadsheet.
12.8-3 Adatatablecanconsiderchangesinonlyoneortwodatacells.
12.8-4 One.
12.8-5 Yes.Thespidergraphcanconsiderchangesinmanydatacellsatatime.
12.8-6 SensIt’sspidergraphassumesthateachdatavaluevariesbythesameamount.Sensit’stornadodiagramovercomesthislimitation.
12.9-1 Utilitiesareintendedtoreflectthetruevalueofanoutcometothedecision-maker.
12.9-2
12.9-3 Undertheassumptionsofutilitytheory,thedecision-maker’sutilityfunctionformoneyhasthepropertythatthedecision-makerisindifferentbetweentwoalternativecoursesofactionifthetwoalternativeshavethesameexpectedutility.
12.9-4 Thedecision-makerisofferedtwohypotheticalalternativesandaskedtoidentifythepointofindifferencebetweenthetwo.
12.9-5 Thepointofindifferenceisthevalueofpwherethedecision-makerisindifferentbetweenthetwohypotheticalalternatives.
12.9-6 Thevalueobtainedtoevaluateeachnodeofthetreeistheexpectedutility.
12.9-7 Maxdecidedtodotheseismicsurveyandtoselliftheresultisunfavorableordrilliftheresultisfavorable.
12.10-1 TheGoferbrokeproblemcontainedthesameelementsastypicalapplicationsofdecisionanalysisbutisoversimplified.
12.10-2 Aninfluencediagramcomplementsthedecisiontreeforrepresentingandanalyzingdecisionanalysisproblems.
12.10-3 Typicalparticipantsincludemanagement,ananalyst,andagroupfacilitator.
12.10-4 Amanagercangotoamanagementconsultingfirmthatspecializesindecisionanalysis.
12.10-5 Decisionanalysisiswidelyusedaroundtheworld.
Problems
12.1 a) Max(A1)=6,Max(A2)=4,Max(A3)=8.Maximax=8withalternativeA3.
b) Min(A1)=2,Min(A2)=3,Min(A3)=1.Maximin=3withalternativeA2.
12.2 a) Max(A1)=30,Max(A2)=31,Max(A3)=22,Max(A4)=29.Maximax=31withA2.
b) Min(A1)=20,Min(A2)=14,Min(A3)=22,Min(A4)=21.Maximin=22withA3.
12.3 a)
StateofNature
Alternative
Sell10cases
Sell11cases
Sell12cases
Sell13cases
Buy10cases
$50
$50
$50
$50
Buy11cases
$47
$55
$55
$55
Buy12cases
$44
$52
$60
$60
Buy13cases
$41
$49
$57
$65
PriorProbability
b) Max(Buy10)=$50,Max(Buy11)=$55,Max(Buy12)=$60,Max(Buy13)=$65.
Maximax=$65withbuying13cases.
c) Min(Buy10)=$50,Min(Buy11)=$47,Min(Buy12)=$44,Min(Buy13)=$41.
Maximin=$50withbuying10cases.
d) Themostlikelystateofnatureistosell11cases.Underthisstate,sheshouldbuy11caseswithapayoffof$55.
e)
Jeanshouldbuy12cases.Themaximumexpectedpayoffis$53.60.
f)
Jeanshouldpurchase12cases.Themaximumexpectedpayoffis$55.20.
Jeanshouldpurchase12cases.Themaximumexpectedpayoffis$54.40.
Jeanshouldpurchase11cases.Themaximumexpectedpayoffis$53.40.
12.4 a) Max(Conservative)=$30million
Max(Speculative)=$40million
Max(Countercyclical)=$15million
Maximax=$40millionwiththespeculativeinvestment
b) Min(Conservative)=–$10million
Min(Speculative)=–$30million
Min(Countercyclical)=–$10million
Maximin=–$10millionwitheithertheconservativeofcountercyclicalinvestment.
c) Thestableeconomyisthemostlikelystateofnature.
Thespeculativeinvestmenthasthemaximumpayoffforthisstate($10million).
d) Thecountercyclicalinvestmenthasthemaximumexpectedpayoffof$5million.
12.5 a) Thecountercyclicalinvestmenthasthemaximumexpectedpayoffof$8million.
b) Thespeculativeinvestmenthasthemaximumexpectedpayoffof$5million.
c&d)
e)
f) Parta)Partb)
g)
h)
Counter-cyclicalandconservativecrossatapproximatelyp=0.62.
Conservativeandspeculativecrossatapproximatelyp=0.68.
i) Letp=priorprobabilityofstableeconomy
Fortheconservativeoption:
EP =(0.1)(30)+p(5)+(1–0.1–p)(–10)
=3+5p–9+10p
=15p–6
Forthespeculativeoption:
EP =(0.1)(40)+p(10)+(1–0.1–p)(–30)
=4+10p–27+30p
=40p–23
Forthecounter-cyclicaloption:
EP =(0.1)(–10)+p(0)+(1–0.1–p)(15)
=–1+0+13.5–15p
=–15p+12.5
Counter-cyclicalandconservativecrosswhen
–15p+12.5=15p–6or30p=18.5orp=0.617
Conservativeandspeculativecrosswhen
15p–6=40p–23or25p=17orp=0.68
Theyshouldchoosethecounter-cyclicaloptionwhenp<0.617,theconservativeoptionwhen0.617≤p<0.68,andthespeculativeoptionwhenp≥0.68.
12.6 a) Max(A1)=80,Max(A2)=50,Max(A3)=60.
Maximax=$80thousandwhenchoosingalternativeA1.
b) Min(A1)=25,Min(A2)=30,Min(A3)=40.
Maximin=$40thousandwhenchoosingalternativeA3.
c) S2isthemostlikelyoutcome.Forthisstate,themaximumpayoffof$50thousandoccurswithalternativeA2.
d) AlternativeA3hasthehighestexpectedpayoffof$48thousand.
e)
f) WhenthepriorprobabilityofS1is0.2,alternativeA2shouldbechosen,withanexpectedpayoffof$46thousand.
WhenthepriorprobabilityofS1is0.6,alternativeA1shouldbechosen,withanexpectedpayoffof$58thousand.
g)
12.7 a) Max(A1)=$220thousand,Max(A2)=$200thousand.
Maximax=$220thousandwhenchoosingalternativeA1.
b) Min(A1)=$110thousand,Min(A2)=$150thousand.
Maximin=$150thousandwhenchoosingalternativeA2.
c) S1isthemostlikelyoutcome.Forthisstate,themaximumpayoffof$220thousandoccurswithalternativeA1.
d) AlternativeA1hasthehighestexpectedpayoffof$194thousand.
e&f)
g)
Letp=priorprobabilityofS1.
ForA1:
EP =p(220)+(1–0.1–p)(170)+(0.1)(110)
=220p+153–170p+11
=50p+164
ForA2:
EP =p(200)+(1–0.1–p)(180)+(0.1)(150)
=200p+162–180p+15 =20p+177
A1andA2crosswhen50p+164=20p+177or30p=13orp=0.433.
TheyshouldchooseA2whenp≤0.433,A1whenp>0.433.
h)
Letp=priorprobabilityofS1.
ForA1:
EP =p(220)+(0.3)(170)+(1–0.3–p)(110)
=220p+51+77–110p
=110p+128
ForA2:
EP =p(200)+(0.3)(180)+(1–0.3–p)(150)
=200p+54+105–150p
=50p+159
A1andA2crosswhen110p+128=50p+159or60p=31orp=0.517.
TheyshouldchooseA2whenp≤0.517,A1whenp>0.517.
i)
Letp=priorprobabilityofS2.
ForA1:
EP =(0.6)(220)+p(170)+(1–0.6–p)(110)
=132+170p+44–110p
=60p+176
ForA2:
EP =(0.6)(200)+p(180)+(1–0.6–p)(150)
=120+180p+60–150p
=30p+180
A1andA2crosswhen60p+176=30p+180or30p=4orp=0.133.
TheyshouldchooseA2whenp≤0.133,A1whenp>0.133.
j) AlternativeA1shouldbechosen.
12.8 a)
StateofNature(Weather)
Alternative
Dry
Moderate
Damp
Crop1
20
35
40
Crop2
30
45
Crop3
30
25
25
Crop4
20
20
20
PriorProbability
b)
c) Crop1hasthehighestexpectedpayoffof$31,500.
d) Whenthepriorprobabilityofmoderateweatheris0.2,Crop2hasthehighestexpectedpayoffof$35,250.
Whenthepriorprobabilityofmoderateweatheris0.3,Crop2hasthehighestexpectedpayoffof$33,750.
Whenthepriorprobabilityofmoderateweatheris0.4,Crop2hasthehighestexpectedpayoffof$32,250.
Whenthepriorprobabilityofmoderateweatheris0.6,Crop1hasthehighestexpectedpayoffof$31,000.
12.9 Whenx=50,alternativeA3hasthehighestexpectedpayoffof$5,600.
Whenx=75,alternativeA1hasthehighestexpectedpayoffof$7,400.
BarbaraMillershouldpayamaximumof$1,800toincreasexto75.
12.10 a) AlternativeA2hasthehighestexpectedpayoffof$1,000.
b) Withperfectinformation,chooseA1forwhenthestateisS1,A2whenthestateisS2,andA3whenthestateisS3.
EP(withperfectinformation)=(0.2)(4)+(0.5)(2)+(0.3)(1)=$2,100
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$2,100–$1,000=$1,100.
c)
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$2,100–$1,000=$1,100.
d) Sincetheinformationwillcost$1,000andthevalueisnomorethan$1,100,itmightbeworthwhiletospendthemoney.
12.11 a) AlternativeA1hasthehighestexpectedpayoffof$35.
b) Withperfectinformation,chooseA1forwhenthestateisS1,A1whenthestateisS2,andA2whenthestateisS3.
EP(withperfectinformation)=(0.5)($50)+(0.3)($100)+(0.2)(–$10)=$53
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$53–$35=$18
c)
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$53–$35=$18
d) Betsyshouldconsiderspendingupto$18toobtainmoreinformation.
12.12 a) AlternativeA3hasthehighestexpectedpayoffof$35,000.
b) IfS1occursforcertainthenchoosealternativeA3(payoffis$10,000).
IfS1doesnotoccurforcertainthenthechanceofS2occurringis3/8andthechanceofS3occurringis5/8.SochooseA1(expectedpayoffis$66,250).
A1: (3/8)(10)+(5/8)(100)=66.25
A2: (3/8)(20)+(5/8)(50)=38.75
A3: (3/8)(10)+(5/8)(60)=41.25
EP(withinformation)=(0.2)(10)+(0.8)(66.25)=55
EVI=EP(withinformation)–EP(withoutmoreinformation)
=55–35=$20,000
Themaximumamountyoushouldpayfortheinformationis$20,000.
ThedecisionwiththisinformationwouldbetochooseA3ifS1willoccur.OtherwisechooseA1.Theexpectedpayoffis$55,000(excludingthepaymentforinformation).
c) IfS2occursforcertainthenchoosealternativeA2(payoffis$20,000).
IfS2doesnotoccurforcertainthenthechanceofS1occurringis2/7andthechanceofS3occurringis5/7.SochooseA3(expectedpayoffis$45,714).
A1: (2/7)(–100)+(5/7)(100)=42.857
A2: (2/7)(–10)+(5/7)(50)=32.857
A3: (2/7)(10)+(5/7)(60)=45.714
EP(withinformation)=(0.3)(20)+(0.7)(42.857)=38
EVI=EP(withinformation)–EP(withoutmoreinformation)
=38–35=$3,000
Themaximumamountyoushouldpayfortheinformationis$3,000.
ThedecisionwiththisinformationwouldbetochooseA2ifS2willoccur.OtherwisechooseA3.Theexpectedpayoffis$38,000(excludingthepaymentforinformation).
d) IfS3occursforcertainthenchoosealternativeA1(payoffis$100,000).
IfS3doesnotoccurforcertainthenthechanceofS1occurringis2/5andthechanceofS2occurringis3/5.SochooseA3(expectedpayoffis$10,000).
A1: (2/5)(–100)+(3/5)(10)=–34
A2: (2/5)(–10)+(3/5)(20)=8
A3: (2/5)(10)+(3/5)(10)=10
EP(withinformation)=(0.5)(100)+(0.5)(10)=55
EVI=EP(withinformation)–EP(withoutmoreinformation)
=55–35=$20,000
Themaximumamountyoushouldpayfortheinformationis$20,000.
ThedecisionwiththisinformationwouldbetochooseA1ifS3willoccur.OtherwisechooseA3.Theexpectedpayoffis$55,000(excludingthepaymentforinformation).
e) Withperfectinformation,chooseA3forwhenthestateisS1,A2whenthestateisS2,andA1whenthestateisS3.
EP(withperfectinformation)=(0.2)(10)+(0.3)(20)+(0.5)(100)=$58,000
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=58–35=$23,000
Amaximumof$23,000shouldbepaidfortheinformation.Withperfectinformation,chooseA3forwhenthestateisS1,A2whenthestateisS2,andA1whenthestateisS3.Theresultingexpectedpayoffis$58,000.
f) Themaximumamountyoushouldeverpayfortestingis$23,000.
12.13 a)
b)
c&d) Theoptimalpolicyistodoaseismicsurveyandsellifitisunfavorableordrillifitisfavorable.
12.14 a)
b)
c)
12.15 a)
StateofNature
Alternative
PoorRisk
AverageRisk
GoodRisk
ExtendCredit
-$15,000
$10,000
$20,000
Don’tExtendCredit
$0
$0
$0
PriorProbabilities
b) Extendingcreditmaximizestheexpectedpayoff($8,000).
c) Withperfectinformation,youwouldextendcreditiftheircreditrecordisaverageorgood,anddon’textendcreditiftheircreditrecordispoor.
EP(withperfectinformation)=(0.2)(0)+(0.5)(10)+(0.3)(20)=$11,000
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$11,000–$8,000=$3,000.
Thisindicatesthatthecredit-ratingorganizationshouldnotbeused.
d) PF=PoorFinding AF=AverageFinding GF=GoodFinding
PS=PoorState AS=AverageState GS=GoodState
e)
f&g) Vincentshouldnotgetthecreditratingandsimplyextendcredit.
12.16 a) AlternativeA1maximizestheexpectedpayoff($100).
b)
EVPI=EP(withperfectinfo)–EP(withoutmoreinfo)=$220–$100=$120
Thisindicatesthatitmightbeworthwhiletodotheresearch.
c) P(stateandfinding)=P(state)P(finding|state)
i) P(PredictS1andActualS1)=(0.4)(0.6)=0.24
ii) P(PredictS1andActualS2)=(0.4)(0.4)=0.16
iii) P(PredictS2andActualS1)=(0.6)(0.2)=0.12
iv) P(PredictS2andActualS2
d) P(PredictS1)=0.24+0.12=0.36
P(PredictS2
e) P(state|finding)=P(stateandfinding)/P(finding)
P(ActualS1|PredictS1)=0.24/0.36=0.667
P(ActualS1|PredictS2)=0.16/0.64=0.250
P(ActualS2|PredictS1)=0.12/0.36=0.333
P(ActualS2|PredictS2
f)
g) IfS1ispredicted,thenchoosingalternativeA1maximizestheexpectedpayoff($233.33).
h) IfS2ispredicted,thenchoosingalternativeA2maximizestheexpectedpayoff($75).
i) Expectedpayoffgivenresearchis(0.36)($233.33)+(0.64)($75)–$100=$32.
j) TheoptimalpolicyistodonoresearchandsimplychooseA1.
k)
12.17 athroughd)
e)
12.18 a)
StateofNature
Alternative
Successful
Unsuccessful
Developnewproduct
$1,500,000
–$1,800,000
Don’tdevelopnewproduct
0
0
PriorProbabilities
b) Choosingtodeveloptheproductmaximizestheexpectedpayoff($400,000).
c) Withperfectinformation,Telemoreshoulddeveloptheproductifitwouldbesuccessful,anddon’tifitwillbeunsuccessful.
EP(perfectinformation)=(0.667)(1.5)+(0.333)(0)=$1million.
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$1,000,000–$400,000=$600,000.
Thisindicatesthatconsiderationshouldbegiventoconductingthemarketsurvey.
d)
e) Theyshouldconductthesurvey,anddeveloptheproductifthesurveypredictstheproductwillbesuccessful.Theexpectedpayoffis$520,000.
f)
12.19 a)
StateofNature
Alternative
Screen
–$1,500
–$1,500
Don’tscreen
–$750
–$3,750
PriorProbabilities
b) Choosingnottoscreenmaximizestheexpectedpayoff.Theexpectedcostis$1,350.
c) Withperfectinformation,theywouldscreenifp=0.25,anddon’tscreenifp=0.05.
EP(withperfectinformation)=(0.8)(–$750)+(0.2)(–$1,500)=–$900
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=(–$900)–(–$1,350)=$450.
Thisindicatesthatconsiderationshouldbegiventoinspectingthesingleitem.
d)
e) Theoptimalpolicyisnottopre-screenorscreen.
12.20 a)
StateofNature
Alternative
Sell10,000
Sell100,000
BuildComputers
$0
$54million
SellRights
$15million
$15million
b)
c) Theyshouldbuildcomputers,withanexpectedpayoffof$27million.
d)
e)
f) Letp=priorprobabilityofselling10,000.
ForBuild:
EP =p(0)+(1–p)(54)
=–54p+54
ForSell:
EP =p(15)+(1–p)(15)
=15
BuildandSellcrosswhen–54p+54=15or54p=39orp=0.722
Theyshouldbuildwhenp≤0.722,andsellwhenp>0.722.
12.21 a) Withperfectinformation,theyshouldbuildcomputersiftheywillsell100,000ofthem,andselltherightsiftheycouldonlysell10,000computers.
EP(withperfectinformation)=(0.5)(54)+(0.5)(15)=$34.5million
EVPI=EP(withperfectinformation)–EPwithoutmoreinformation)
=34.5–27=$7.5million.
b)Sincethemarketresearchwillcost$1millionitmightbeworthwhiletoperformit.
c)
d)
12.22 a) Theoptimalpolicyistodonomarketresearchandbuildthecomputers.Theexpectedpayoffis$27million.
b) Iftherightscanbesoldfor$16.5or$13.5million,theoptimalpolicyisstilltobuildthecomputerswithanexpectedpayoffof$27million.
Ifthecostofsettinguptheassemblylineis$5.4millionor$6.6million,theoptimalpolicyisstilltobuildthecomputerswithanexpectedpayoffof$27.6or$26.4million,respectively.
Ifthedifferencebetweenthesellingpriceandvariablecostofeachcomputeris$540or$660,theoptimalpolicyisstilltobuildthecomputerswithanexpectedpayoffof$23.7or$33.3million,respectively.
Foreachcombinationoffinancialdata,theexpectedpayoffisasshownbelow.Inallcases,theoptimalpolicyistobuildthecomputers(withoutmarketresearch).
SellRights
Costof
AssemblyLine
SellingPrice–
VariableCost
Expected
Payoff
$13.5million
$5.4million
$540
$24.3million
$13.5million
$5.4million
$660
$30.9million
$13.5million
$6.6million
$540
$23.1million
$13.5million
$6.6million
$660
$29.7million
$16.5million
$5.4million
$540
$24.3million
$16.5million
$5.4million
$660
$30.9million
$16.5million
$6.6million
$540
$23.1million
$16.5million
$6.6million
$660
$29.7million
c)
d)
12.23 aandb)
12.24
12.25 a)
StateofNature
Alternative
WinningSeason
LosingSeason
Holdcampaign
$3million
–$2million
Don’tholdcampaign
0
0
PriorProbabilities
b) Choosingtoholdthecampaignmaximizestheexpectedpayoff($1million).
c) Withperfectinformation,LelandUniversityshouldholdthecampaigniftheywillhaveawinningseasonanddon’tholdthecampaigniftheywillhavealosingseason.
EP(withperfectinformation)=(0.6)(3)+(0.4)(0)=$1.8million
EVPI =EP(withperfectinfo)–EP(withoutmoreinfo)
=$1.8million–$1million=$800,000.
d)
e)
f&g) LelandUniversityshouldhireWilliam.Ifhepredictsawinningseasonthentheyshouldholdthecampaign,ifhepredictsalosingseasonthentheyshouldnotholdthecampaign.
12.26 a&c) (Note:thisdecisiontreecontinuesonthenextpage.)
b) Thecomptrollershouldinvestinstocksthefirstyear.Ifthereisgrowthduringthefirstyearthensheshouldinvestinstocksagainthesecondyear.Ifthereisarecessionduringthefirstyearthensheshouldinvestinbondsforthesecondyear.Theexpectedpayoffis$122.94million.
12.27 a&b) TheoptimalpolicyistowaituntilWednesdaytobuyifthepriceis$9onTuesday.Ifthepriceis$10or$11onTuesdaythenbuyonTuesday.
12.28 Theoptimalpolicyistosamplethefruitandbuyifitisexcellentandrejectifitisunsatisfactory.
12.29 a)
StateofNature
Alternative
Successful
Unsuccessful
Introducenewproduct
$40million
–$15million
Don’tintroducenewproduct
0
0
PriorProbabilities
Choosetointroducethenewproduct(expectedpayoffis$12.5million).
b) Withperfectinformation,MortonWardshouldintroducetheproductifitwillbesuccessful,anddon’tintroducetheproductifitwon’t.
EP(withperfectinformation)=(0.5)(40)+(0.5)(0)=$20million.
EVPI=EP(withperfectinfo)–EP(withoutmoreinfo)=20–12.5=$7.5million.
c) Theoptimalpolicyisnottotestbuttointroducethenewproduct.Theexpectedpayoffis$12.5million.
d) Ifthenetprofitifsuccessfulisonly$30million,thentheoptimalpolicyistoconductthetestmarketandonlyintroducetheproductifthetestmarketapproves.Theexpectedpayoffis$8.125million.
Ifthenetprofitifsuccessfulis$50million,thentheoptimalpolicyistoskipthetestmarketandintroducetheproduct,withanexpectedpayoffof$17.5million.
Ifthenetlossifunsuccessfulisonly$11.25million,thentheoptimalpolicyistoskipthetestmarketandintroducetheproduct,withanexpectedpayoffof$14.375million.
Ifthenetlossifunsuccessfulis$18.75million,thentheoptimalpolicyistoconductthetestmarketandonlyintroducetheproductifthetestmarketapproves.Theexpectedpayoffis$11.656million.
Foreachcombinationoffinancialdata,theexpectedpayoffisasshownbelow.Inallcases,theoptimalpolicyistobuildthecomputers(withoutmarketresearch).
NetProfitif
Successful
NetLossif
Unsuccessful
Optimal
Policy
Expected
Payoff
$30million
$11.25million
SkipTest,IntroduceProduct
$9.375million
$30million
$18.75million
Test,IntroduceifApprove
$7.656million
$50million
$11.25million
SkipTest,IntroduceProduct
$19.375million
$50million
$18.75million
Test,IntroduceifApprove
$15.656million
e)
f)
Bothchartsindicatethattheexpectedprofitissens
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)的工程進度管理計劃
- 職業(yè)技能提升計劃的實施路徑
- 會計行業(yè)發(fā)展趨勢的分析計劃
- 提高幼兒園教育活動的參與感計劃
- 感知美好生活的藝術(shù)活動計劃
- 《貴州安晟能源有限公司貴州省大方縣對江井田煤礦(新建)礦產(chǎn)資源綠色開發(fā)利用方案(三合一)》專家組評審意見
- 四川省宜賓市南溪二中高二體育《運球、雙手胸前傳接球》教學(xué)實錄
- 艾灸治療便秘
- 2025年紅河貨運從業(yè)資格證考試模擬考試題庫下載
- 2025年武漢貨運駕駛從業(yè)資格證考試題庫
- 2024數(shù)據(jù)智能白皮書
- 2024社工(初)《社會工作實務(wù)》考試題庫附答案
- 2024年蘭州市高三診斷考試(一診)數(shù)學(xué)試卷(含答案)
- 辦公耗材采購服務(wù)方案(技術(shù)方案)
- (高清版)JTGT 5532-2023 公路橋梁支座和伸縮裝置養(yǎng)護與更換技術(shù)規(guī)范
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年六年級下學(xué)期期末數(shù)學(xué)試卷
- 《成功之路+進步篇+1》第1課課件
- (2024年)特種設(shè)備安全法律法規(guī)培訓(xùn)課件
- 關(guān)愛老人婚姻法知識講座
- (高清版)TDT 1013-2013 土地整治項目驗收規(guī)程
- 內(nèi)蒙古機電職業(yè)技術(shù)學(xué)院單獨招生(機電類)專業(yè)知識考試題庫(必練500題)
評論
0/150
提交評論