




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
天水市重點中學2025屆初三下學期8月聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a(chǎn)+a2=a32.如圖,等邊三角形ABC的邊長為3,N為AC的三等分點,三角形邊上的動點M從點A出發(fā),沿A→B→C的方向運動,到達點C時停止.設點M運動的路程為x,MN2=y,則y關于x的函數(shù)圖象大致為A.B.C.D.3.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.104.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶35.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④6.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB,點P從點A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結束,設運動時間為x(單位:s),弦BP的長為y,那么下列圖象中可能表示y與x函數(shù)關系的是()A.① B.③ C.②或④ D.①或③7.函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點B.給出如下結論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CA=AP.其中所有正確結論的序號是()A.①②③ B.②③④ C.①③④ D.①②④8.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結論:①abc<0;②3b+4c<0;③c>﹣1;④關于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結論個數(shù)是()A.1 B.2 C.3 D.49.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點,若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<010.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.5二、填空題(共7小題,每小題3分,滿分21分)11.長、寬分別為a、b的矩形,它的周長為14,面積為10,則a2b+ab2的值為_____.12.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.13.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.14.已知實數(shù)m,n滿足,,且,則=.15.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.16.關于的一元二次方程有兩個相等的實數(shù)根,則的值等于_____.17.新定義[a,b]為一次函數(shù)(其中a≠0,且a,b為實數(shù))的“關聯(lián)數(shù)”,若“關聯(lián)數(shù)”[3,m+2]所對應的一次函數(shù)是正比例函數(shù),則關于x的方程1x-1+1三、解答題(共7小題,滿分69分)18.(10分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)19.(5分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.20.(8分)如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標;(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.21.(10分)某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,商品名稱甲乙進價(元/件)80100售價(元/件)160240設其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設計出使該商場獲得最大利潤的進貨方案.22.(10分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.(1)求該拋物線的解析式和頂點坐標;(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.①若點O關于直線QB的對稱點為點C,當點C恰好在直線l上時,求點Q的坐標;②若點O關于直線QB的對稱點為點D,當線段AD的長最短時,求點Q的坐標(直接寫出答案即可).23.(12分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結果即可).24.(14分)某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.請結合統(tǒng)計圖,回答下列問題:(1)這次調(diào)查中,一共調(diào)查了多少名學生?(2)求出扇形統(tǒng)計圖中“B:跳繩”所對扇形的圓心角的度數(shù),并補全條形圖;(3)若該校有2000名學生,請估計選擇“A:跑步”的學生約有多少人?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:直接利用冪的乘方運算法則以及同底數(shù)冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數(shù)冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關運算法則是解題關鍵.2、B【解析】分析:分析y隨x的變化而變化的趨勢,應用排它法求解,而不一定要通過求解析式來解決:∵等邊三角形ABC的邊長為3,N為AC的三等分點,∴AN=1。∴當點M位于點A處時,x=0,y=1。①當動點M從A點出發(fā)到AM=的過程中,y隨x的增大而減小,故排除D;②當動點M到達C點時,x=6,y=3﹣1=2,即此時y的值與點M在點A處時的值不相等,故排除A、C。故選B。3、B【解析】
平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.本題考查了平行四邊形的性質(zhì),解題的關鍵是利用三角形中位線定理進行求解.4、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對應邊之比的平方,進而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關系(銳角三角形函數(shù))即可得出對應邊之比,進而得到面積比.5、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0?!叨魏瘮?shù)的圖象y軸的交點在y軸的負半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個交點的坐標是(1,0)?!喟褁=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤?!叨魏瘮?shù)y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。6、D【解析】
分兩種情形討論當點P順時針旋轉(zhuǎn)時,圖象是③,當點P逆時針旋轉(zhuǎn)時,圖象是①,由此即可解決問題.【詳解】分兩種情況討論:①當點P順時針旋轉(zhuǎn)時,BP的長從增加到2,再降到0,再增加到,圖象③符合;②當點P逆時針旋轉(zhuǎn)時,BP的長從降到0,再增加到2,再降到,圖象①符合.故答案為①或③.故選D.本題考查了動點問題函數(shù)圖象、圓的有關知識,解題的關鍵理解題意,學會用分類討論的思想思考問題,屬于中考??碱}型.7、C【解析】解:∵A、B是反比函數(shù)上的點,∴S△OBD=S△OAC=,故①正確;當P的橫縱坐標相等時PA=PB,故②錯誤;∵P是的圖象上一動點,∴S矩形PDOC=4,∴S四邊形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正確;連接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正確;綜上所述,正確的結論有①③④.故選C.點睛:本題考查的是反比例函數(shù)綜合題,熟知反比例函數(shù)中系數(shù)k的幾何意義是解答此題的關鍵.8、B【解析】
由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設成立,故④正確.綜上可知正確的結論有三個:③④.故選B.本題主要考查二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關系以及二次函數(shù)與方程、不等式的關系是解題的關鍵.特別是利用好題目中的OA=OC,是解題的關鍵.9、B【解析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.10、C【解析】
如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質(zhì)可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.本題考查了圓周角定理、相似三角形的判定定理與性質(zhì)、正切函數(shù)值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】
由周長和面積可分別求得a+b和ab的值,再利用因式分解把所求代數(shù)式可化為ab(a+b),代入可求得答案【詳解】∵長、寬分別為a、b的矩形,它的周長為14,面積為10,
∴a+b==7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=1,
故答案為:1.本題主要考查因式分解的應用,把所求代數(shù)式化為ab(a+b)是解題的關鍵.12、【解析】
由△ABC中,點D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.考查了平行線分線段成比例定理,解題時注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.13、【解析】
連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.本題考查了扇形的面積計算以及全等三角形的判定與性質(zhì)等知識,根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關鍵.14、.【解析】試題分析:由時,得到m,n是方程的兩個不等的根,根據(jù)根與系數(shù)的關系進行求解.試題解析:∵時,則m,n是方程3x2﹣6x﹣5=0的兩個不相等的根,∴,.∴原式===,故答案為.考點:根與系數(shù)的關系.15、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】
此題主要考查了菱形的性質(zhì),勾股定理,關鍵是要熟記定理的內(nèi)容并會應用.16、【解析】分析:先根據(jù)根的判別式得到a-1=,把原式變形為,然后代入即可得出結果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△<0,方程沒有實數(shù)根;當△=0,方程有兩個,相等的實數(shù)根,也考查了一元二次方程的定義.17、53【解析】試題分析:根據(jù)“關聯(lián)數(shù)”[3,m+2]所對應的一次函數(shù)是正比例函數(shù),得到y(tǒng)=3x+m+2為正比例函數(shù),即m+2=0,解得:m=-2,則分式方程為1x-1去分母得:2-(x-1)=2(x-1),去括號得:2-x+1=2x-2,解得:x=53經(jīng)檢驗x=53考點:1.一次函數(shù)的定義;2.解分式方程;3.正比例函數(shù)的定義.三、解答題(共7小題,滿分69分)18、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】
(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數(shù),∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.此題主要考查不等式的應用,解題的關鍵是根據(jù)題意找到等量關系與不等關系進行列式求解.19、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.20、(1)B(-1.2);(2)y=;(3)見解析.【解析】
(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標;(2)根據(jù)A、B、O三點的坐標,利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設出P點坐標,則可表示出E點坐標,可表示出PE的長,進一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點的坐標.【詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設拋物線解析式為y=ax2+bx,把A、B兩點坐標代入可得,解得,∴經(jīng)過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設P點坐標為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當t=1時,四邊形ABOP的面積最大,此時P點坐標為(1,-),綜上可知存在使四邊形ABOP的面積最大的點P,其坐標為(1,-).本題為二次函數(shù)的綜合應用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識.在(1)中構造三角形全等是解題的關鍵,在(2)中注意待定系數(shù)法的應用,在(3)中用t表示出四邊形ABOP的面積是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.21、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應購進甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據(jù)總利潤=(甲的售價-甲的進價)×購進甲的數(shù)量+(乙的售價-乙的進價)×購進乙的數(shù)量代入列關系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當50<a<60時,a﹣60<0,y隨x的增大而減小,∴當x=100時,y有最大利潤,即商場應購進甲商品100件,乙商品100件,獲利最大,②當a=60時,a﹣60=0,y=28000,即商場應購進甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時,獲利最大,③當60<a<70時,a﹣60>0,y隨x的增大而增大,∴當x=120時,y有最大利潤,即商場應購進甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數(shù)和一元一次不等式的綜合應用,屬于銷售利潤問題,在此類題中,要明確售價、進價、利潤的關系式:單件利潤=售價-進價,總利潤=單個利潤×數(shù)量;認真讀題,弄清題中的每一個條件;對于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.22、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);【解析】
1)把0(0,0),A(4,4v3)的坐標代入y=﹣x2+bx+c,轉(zhuǎn)化為解方程組即可.(2)先求出直線OA的解析式,點B坐標,拋物線的對稱軸即可解決問題.(3)①如圖1中,點O關于直線BQ的對稱點為點C,當點C恰好在直線l上時,首先證明四邊形BOQC是菱形,設Q(m,),根據(jù)OQ=OB=5,可得方程,解方程即可解決問題.②如圖2中,由題意點D在以B為圓心5為半徑的OB上運動,當A,D、B共線時,線段AD最小,設OD與BQ交于點H.先求出D、H兩點坐標,再求出直線BH的解析式即可解決問題.【詳解】(1)把O(0,0),A(4,4)的坐標代入y=﹣x2+bx+c,得,解得,∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.所以拋物線的頂點坐標為(,);(2)①由題意B(5,0),A(4,4),∴直線OA的解析式為y=x,AB==7,∵拋物線的對稱軸x=,∴P(,).如圖1中,點O關于直線BQ的對稱點為點C,當點C恰好在直線l上時,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四邊形BOQC是平行四邊形,∵BO=BC,∴四邊形BOQC是菱形,設Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴點Q坐標為(﹣,)或(,);②如圖2中,由題意點D在以B為圓心5為半徑的⊙B上運動,當A、D、B共線時,線段AD最小,設OD與BQ交于點H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直線B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級數(shù)學下冊教案-5.3 長方形的面積(2)-北師大版
- 五年級下冊數(shù)學教案-2.1 分數(shù)的意義 ︳西師大版
- 2025年合同占股模板
- 一年級下數(shù)學教案-綜合練習-北師大版
- 2025年河北省石家莊市單招職業(yè)傾向性測試題庫附答案
- 2024年浸酸劑項目資金籌措計劃書代可行性研究報告
- 2025年湖南省郴州市單招職業(yè)適應性測試題庫審定版
- 2025年度心理咨詢師培訓朋輩督導小組保密合作協(xié)議
- 2025年度家禽養(yǎng)殖與食品安全監(jiān)管合作協(xié)議
- 2025年度導演與票務銷售公司聘用合同
- 中小學教師教育法律法規(guī)培訓PPT頁
- 醫(yī)療器械可用性工程文檔
- 非遺文化介紹推廣課件
- 統(tǒng)編教材四年級下冊語文第二單元教學解讀及建議1
- 火電機組整套啟動前安全技術交底卡
- 菲斯特轉(zhuǎn)子秤的
- 藥學專業(yè)教學資源庫建設申報書
- 解讀《泰州市市區(qū)城市排水管理辦法》
- 人教版五年級下冊口算題大全(全冊齊全)
- 林則徐課件完整版
- 旅行社運營實務電子課件 6.1 初涉旅行社管理
評論
0/150
提交評論