版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省紹興市諸暨市浣江教育集團(tuán)2024-2025學(xué)年初三下學(xué)期學(xué)習(xí)能力診斷卷數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.某市2017年國(guó)內(nèi)生產(chǎn)總值(GDP)比2016年增長(zhǎng)了12%,由于受到國(guó)際金融危機(jī)的影響,預(yù)計(jì)2018比2017年增長(zhǎng)7%,若這兩年GDP年平均增長(zhǎng)率為%,則%滿(mǎn)足的關(guān)系是()A. B.C. D.2.如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為()A.10 B.9 C.8 D.73.如圖,點(diǎn)D在△ABC邊延長(zhǎng)線(xiàn)上,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線(xiàn)EF∥BC,交∠BCA的平分線(xiàn)于點(diǎn)F,交∠BCA的外角平分線(xiàn)于E,當(dāng)點(diǎn)O在線(xiàn)段AC上移動(dòng)(不與點(diǎn)A,C重合)時(shí),下列結(jié)論不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四邊形AFCE是矩形4.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說(shuō)法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等5.如圖,在中,,,,則等于()A. B. C. D.6.已知圓A的半徑長(zhǎng)為4,圓B的半徑長(zhǎng)為7,它們的圓心距為d,要使這兩圓沒(méi)有公共點(diǎn),那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.7.歐幾里得的《原本》記載,形如的方程的圖解法是:畫(huà),使,,,再在斜邊上截取.則該方程的一個(gè)正根是()A.的長(zhǎng) B.的長(zhǎng) C.的長(zhǎng) D.的長(zhǎng)8.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.9.如圖是由4個(gè)相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.10.如圖,一段拋物線(xiàn):y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,得到一“波浪線(xiàn)”,若點(diǎn)P(2018,m)在此“波浪線(xiàn)”上,則m的值為(
)A.4 B.﹣4 C.﹣6 D.611.邊長(zhǎng)相等的正三角形和正六邊形的面積之比為()A.1∶3 B.2∶3 C.1∶6 D.1∶12.如圖,已知點(diǎn)A、B、C、D在⊙O上,圓心O在∠D內(nèi)部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數(shù)和是()A.60° B.45° C.35° D.30°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.方程的根為_(kāi)____.14.如圖,點(diǎn)M是反比例函數(shù)(x>0)圖像上任意一點(diǎn),MN⊥y軸于N,點(diǎn)P是x軸上的動(dòng)點(diǎn),則△MNP的面積為A.1 B.2 C.4 D.不能確定15.如圖,△ABC中,AB=AC,D是AB上的一點(diǎn),且AD=AB,DF∥BC,E為BD的中點(diǎn).若EF⊥AC,BC=6,則四邊形DBCF的面積為_(kāi)___.16.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點(diǎn),則下列結(jié)論正確的有_____.①M(fèi)N=BM+DN②△CMN的周長(zhǎng)等于正方形ABCD的邊長(zhǎng)的兩倍;③EF1=BE1+DF1;④點(diǎn)A到MN的距離等于正方形的邊長(zhǎng)⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.17.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),連接BO并延長(zhǎng)交函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接AC,若△ABC的面積為1.則k的值為_(kāi)____.18.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.求證:AB=DC;試判斷△OEF的形狀,并說(shuō)明理由.20.(6分)圖1是某市2009年4月5日至14日每天最低氣溫的折線(xiàn)統(tǒng)計(jì)圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補(bǔ)全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請(qǐng)用扇形圖表示出這十天里溫度的分布情況.21.(6分)先化簡(jiǎn)代數(shù)式,再?gòu)模?,2,0三個(gè)數(shù)中選一個(gè)恰當(dāng)?shù)臄?shù)作為a的值代入求值.22.(8分)計(jì)算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|23.(8分)學(xué)了統(tǒng)計(jì)知識(shí)后,小紅就本班同學(xué)上學(xué)“喜歡的出行方式”進(jìn)行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答以下問(wèn)題:(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出“騎車(chē)”部分所對(duì)應(yīng)的圓心角的度數(shù).(2)若由3名“喜歡乘車(chē)”的學(xué)生,1名“喜歡騎車(chē)”的學(xué)生組隊(duì)參加一項(xiàng)活動(dòng),現(xiàn)欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),求出2人都是“喜歡乘車(chē)”的學(xué)生的概率,(要求列表或畫(huà)樹(shù)狀圖)24.(10分)如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線(xiàn)AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線(xiàn)交AD的延長(zhǎng)線(xiàn)于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.求∠CDE的度數(shù);求證:DF是⊙O的切線(xiàn);若AC=DE,求tan∠ABD的值.25.(10分)如圖,已知△ABC是等邊三角形,點(diǎn)D在AC邊上一點(diǎn),連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.26.(12分)發(fā)現(xiàn)如圖1,在有一個(gè)“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗(yàn)證如圖2,在有一個(gè)“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個(gè)“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個(gè)連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.27.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD.過(guò)點(diǎn)D作DE⊥AC,垂足為點(diǎn)E.求證:DE是⊙O的切線(xiàn);當(dāng)⊙O半徑為3,CE=2時(shí),求BD長(zhǎng).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】分析:根據(jù)增長(zhǎng)率為12%,7%,可表示出2017年的國(guó)內(nèi)生產(chǎn)總值,2018年的國(guó)內(nèi)生產(chǎn)總值;求2年的增長(zhǎng)率,可用2016年的國(guó)內(nèi)生產(chǎn)總值表示出2018年的國(guó)內(nèi)生產(chǎn)總值,讓2018年的國(guó)內(nèi)生產(chǎn)總值相等即可求得所列方程.詳解:設(shè)2016年的國(guó)內(nèi)生產(chǎn)總值為1,∵2017年國(guó)內(nèi)生產(chǎn)總值(GDP)比2016年增長(zhǎng)了12%,∴2017年的國(guó)內(nèi)生產(chǎn)總值為1+12%;∵2018年比2017年增長(zhǎng)7%,∴2018年的國(guó)內(nèi)生產(chǎn)總值為(1+12%)(1+7%),∵這兩年GDP年平均增長(zhǎng)率為x%,∴2018年的國(guó)內(nèi)生產(chǎn)總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點(diǎn)睛:考查了由實(shí)際問(wèn)題列一元二次方程的知識(shí),當(dāng)必須的量沒(méi)有時(shí),應(yīng)設(shè)其為1;注意2018年的國(guó)內(nèi)生產(chǎn)總值是在2017年的國(guó)內(nèi)生產(chǎn)總值的基礎(chǔ)上增加的,需先算出2016年的國(guó)內(nèi)生產(chǎn)總值.2、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個(gè)內(nèi)角的度數(shù),再延長(zhǎng)五邊形的兩邊相交于一點(diǎn),并根據(jù)四邊形的內(nèi)角和求出這個(gè)角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個(gè)數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個(gè)內(nèi)角為540°÷5=18°,如圖,延長(zhǎng)正五邊形的兩邊相交于點(diǎn)O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個(gè)五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個(gè)五邊形.故選D.點(diǎn)睛:本題考查了多邊形的內(nèi)角和公式,延長(zhǎng)正五邊形的兩邊相交于一點(diǎn),并求出這個(gè)角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個(gè)正五邊形.3、D【解析】
依據(jù)三角形外角性質(zhì),角平分線(xiàn)的定義,以及平行線(xiàn)的性質(zhì),即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,進(jìn)而得到結(jié)論.【詳解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A選項(xiàng)正確;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B選項(xiàng)正確;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=×180°=90°,故C選項(xiàng)正確;∵O不一定是AC的中點(diǎn),∴四邊形AECF不一定是平行四邊形,∴四邊形AFCE不一定是矩形,故D選項(xiàng)錯(cuò)誤,故選D.本題考查三角形外角性質(zhì),角平分線(xiàn)的定義,以及平行線(xiàn)的性質(zhì).4、D【解析】
分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進(jìn)而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計(jì)算方法.5、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點(diǎn)睛:本題主要考查銳角三角函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理及正弦函數(shù)的定義.6、D【解析】∵圓A的半徑長(zhǎng)為4,圓B的半徑長(zhǎng)為7,它們的圓心距為d,∴當(dāng)d>4+7或d<7-4時(shí),這兩個(gè)圓沒(méi)有公共點(diǎn),即d>11或d<3,∴上述四個(gè)數(shù)中,只有D選項(xiàng)中的1符合要求.故選D.點(diǎn)睛:兩圓沒(méi)有公共點(diǎn),存在兩種情況:(1)兩圓外離,此時(shí)圓心距>兩圓半徑的和;(1)兩圓內(nèi)含,此時(shí)圓心距<大圓半徑-小圓半徑.7、B【解析】【分析】可以利用求根公式求出方程的根,根據(jù)勾股定理求出AB的長(zhǎng),進(jìn)而求得AD的長(zhǎng),即可發(fā)現(xiàn)結(jié)論.【解答】用求根公式求得:∵∴∴AD的長(zhǎng)就是方程的正根.故選B.【點(diǎn)評(píng)】考查解一元二次方程已經(jīng)勾股定理等,熟練掌握公式法解一元二次方程是解題的關(guān)鍵.8、D【解析】
首先過(guò)點(diǎn)A向CB引垂線(xiàn),與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過(guò)點(diǎn)A向CB引垂線(xiàn),與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.9、A【解析】試題分析:從上面看是一行3個(gè)正方形.故選A考點(diǎn):三視圖10、C【解析】分析:根據(jù)圖象的旋轉(zhuǎn)變化規(guī)律以及二次函數(shù)的平移規(guī)律得出平移后解析式,進(jìn)而求出m的值,由2017÷5=403…2,可知點(diǎn)P(2018,m)在此“波浪線(xiàn)”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.詳解:當(dāng)y=0時(shí),﹣x(x﹣5)=0,解得x1=0,x2=5,則A1(5,0),∴OA1=5,∵將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…;如此進(jìn)行下去,得到一“波浪線(xiàn)”,∴A1A2=A2A3=…=OA1=5,∴拋物線(xiàn)C404的解析式為y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),當(dāng)x=2018時(shí),y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故選C.點(diǎn)睛:此題主要考查了二次函數(shù)的平移規(guī)律,根據(jù)已知得出二次函數(shù)旋轉(zhuǎn)后解析式是解題關(guān)鍵.11、C【解析】解:設(shè)正三角形的邊長(zhǎng)為1a,則正六邊形的邊長(zhǎng)為1a.過(guò)A作AD⊥BC于D,則∠BAD=30°,AD=AB?cos30°=1a?=a,∴S△ABC=BC?AD=×1a×a=a1.連接OA、OB,過(guò)O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB?cos30°=1a?=a,∴S△ABO=BA?OD=×1a×a=a1,∴正六邊形的面積為:2a1,∴邊長(zhǎng)相等的正三角形和正六邊形的面積之比為:a1:2a1=1:2.故選C.點(diǎn)睛:本題主要考查了正三角形與正六邊形的性質(zhì),根據(jù)已知利用解直角三角形知識(shí)求出正六邊形面積是解題的關(guān)鍵.12、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點(diǎn)A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點(diǎn)睛:在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于圓心角的一半.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、﹣2或﹣7【解析】
把無(wú)理方程轉(zhuǎn)化為整式方程即可解決問(wèn)題.【詳解】?jī)蛇吰椒降玫剑?3+2=25,∴=6,∴(x+11)(2-x)=36,解得x=-2或-7,經(jīng)檢驗(yàn)x=-2或-7都是原方程的解.故答案為-2或-7本題考查無(wú)理方程,解題的關(guān)鍵是學(xué)會(huì)把無(wú)理方程轉(zhuǎn)化為整式方程.14、A【解析】
可以設(shè)出M的坐標(biāo),的面積即可利用M的坐標(biāo)表示,據(jù)此即可求解.【詳解】設(shè)M的坐標(biāo)是(m,n),則mn=2.則MN=m,的MN邊上的高等于n.則的面積故選A.考查反比例函數(shù)系數(shù)k的幾何意義,是??键c(diǎn),需要學(xué)生熟練掌握.15、2【解析】
解:如圖,過(guò)D點(diǎn)作DG⊥AC,垂足為G,過(guò)A點(diǎn)作AH⊥BC,垂足為H,∵AB=AC,點(diǎn)E為BD的中點(diǎn),且AD=AB,∴設(shè)BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽R(shí)t△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.16、①②③④⑤⑥⑦.【解析】
將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長(zhǎng)公式計(jì)算判斷①;判斷出BM=DN時(shí),MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點(diǎn)A順時(shí)針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計(jì)算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計(jì)算,判斷⑥,根據(jù)點(diǎn)A到MN的距離等于正方形ABCD的邊長(zhǎng)、三角形的面積公式計(jì)算,判斷⑦.【詳解】將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時(shí),取等號(hào))∴BM=DN時(shí),MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點(diǎn)G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點(diǎn)M和點(diǎn)B重合時(shí),點(diǎn)N和點(diǎn)C重合,此時(shí),MN最大=AB,即:,∴≤≤1,⑧錯(cuò)誤;∵M(jìn)N=NH=BM+DN∴△CMN的周長(zhǎng)=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長(zhǎng)等于正方形ABCD的邊長(zhǎng)的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點(diǎn)A到MN的距離等于正方形ABCD的邊長(zhǎng)AD,④結(jié)論正確;如圖1,將△ADF繞點(diǎn)A順時(shí)針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點(diǎn)共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過(guò)點(diǎn)M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點(diǎn)A到MN的距離等于正方形ABCD的邊長(zhǎng),∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.17、3【解析】
連接OA.根據(jù)反比例函數(shù)的對(duì)稱(chēng)性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線(xiàn)y=x+2與y軸交點(diǎn)D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2
①.根據(jù)S△OAC=2,得出-a-b=2
②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線(xiàn)y=x+2與y軸交于點(diǎn)D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2
①.過(guò)A點(diǎn)作AM⊥x軸于點(diǎn)M,過(guò)C點(diǎn)作CN⊥x軸于點(diǎn)N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2
②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識(shí),綜合性較強(qiáng),難度適中.根據(jù)反比例函數(shù)的對(duì)稱(chēng)性得出OB=OC是解題的突破口.18、1【解析】
兩個(gè)單項(xiàng)式合并成一個(gè)單項(xiàng)式,說(shuō)明這兩個(gè)單項(xiàng)式為同類(lèi)項(xiàng).【詳解】解:由同類(lèi)項(xiàng)的定義可知,a=2,b=1,∴a+b=1.故答案為:1.本題考查的知識(shí)點(diǎn)為:同類(lèi)項(xiàng)中相同字母的指數(shù)是相同的.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明略(2)等腰三角形,理由略【解析】
證明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF為等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF為等腰三角形.20、(1)作圖見(jiàn)解析;(2)7,7.5,2.8;(3)見(jiàn)解析.【解析】
(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個(gè)溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進(jìn)行計(jì)算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計(jì)圖中所占的度數(shù),然后作出扇形統(tǒng)計(jì)圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補(bǔ)全統(tǒng)計(jì)圖如圖;(2)根據(jù)條形統(tǒng)計(jì)圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個(gè)溫度為7℃,第6個(gè)溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數(shù),×360°=72°,7℃的度數(shù),×360°=108°,8℃的度數(shù),×360°=72°,10℃的度數(shù),×360°=72°,11℃的度數(shù),×360°=36°,作出扇形統(tǒng)計(jì)圖如圖所示.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力.同時(shí)考查中位數(shù)、眾數(shù)的求法:給定n個(gè)數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個(gè)數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個(gè)數(shù)的平均數(shù)就是中位數(shù).任何一組數(shù)據(jù),都一定存在中位數(shù)的,但中位數(shù)不一定是這組數(shù)據(jù)量的數(shù).給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個(gè)數(shù),稱(chēng)為這組數(shù)據(jù)的眾數(shù).21、,2【解析】試題分析:首先將括號(hào)里面的進(jìn)行通分,然后將除法改成乘法進(jìn)行分式的化簡(jiǎn),選擇a的值時(shí),不能使原分式?jīng)]有意義,即a不能取2和-2.試題解析:原式=·=當(dāng)a=0時(shí),原式==2.考點(diǎn):分式的化簡(jiǎn)求值.22、1【解析】
原式第一項(xiàng)利用乘方法則計(jì)算,第二項(xiàng)利用特殊角的三角函數(shù)值計(jì)算,第三項(xiàng)利用零指數(shù)冪法則計(jì)算,最后一項(xiàng)利用絕對(duì)值的代數(shù)意義化簡(jiǎn)即可得到結(jié)果.【詳解】解:原式=1﹣1×22+1+2=1﹣2+1+2此題考查了含有特殊角的三角函數(shù)值的運(yùn)算,熟練掌握各運(yùn)算法則是解題的關(guān)鍵.23、(1)補(bǔ)全條形統(tǒng)計(jì)圖見(jiàn)解析;“騎車(chē)”部分所對(duì)應(yīng)的圓心角的度數(shù)為108°;(2)2人都是“喜歡乘車(chē)”的學(xué)生的概率為.【解析】
(1)從兩圖中可以看出乘車(chē)的有25人,占了50%,即可得共有學(xué)生50人;總?cè)藬?shù)減乘車(chē)的和騎車(chē)的人數(shù)就是步行的人數(shù),根據(jù)數(shù)據(jù)補(bǔ)全直方圖即可;要求扇形的度數(shù)就要先求出騎車(chē)的占的百分比,然后再求度數(shù);(2)列出從這4人中選兩人的所有等可能結(jié)果數(shù),2人都是“喜歡乘車(chē)”的學(xué)生的情況有3種,然后根據(jù)概率公式即可求得.【詳解】(1)被調(diào)查的總?cè)藬?shù)為25÷50%=50人;則步行的人數(shù)為50﹣25﹣15=10人;如圖所示條形圖,“騎車(chē)”部分所對(duì)應(yīng)的圓心角的度數(shù)=×360°=108°;(2)設(shè)3名“喜歡乘車(chē)”的學(xué)生表示為A、B、C,1名“喜歡騎車(chē)”的學(xué)生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車(chē)”的學(xué)生有3種結(jié)果,所以2人都是“喜歡乘車(chē)”的學(xué)生的概率為.本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?4、(1)90°;(1)證明見(jiàn)解析;(3)1.【解析】
(1)根據(jù)圓周角定理即可得∠CDE的度數(shù);(1)連接DO,根據(jù)直角三角形的性質(zhì)和等腰三角形的性質(zhì)易證∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切線(xiàn);(3)根據(jù)已知條件易證△CDE∽△ADC,利用相似三角形的性質(zhì)結(jié)合勾股定理表示出AD,DC的長(zhǎng),再利用圓周角定理得出tan∠ABD的值即可.【詳解】解:(1)解:∵對(duì)角線(xiàn)AC為⊙O的直徑,∴∠ADC=90°,∴∠EDC=90°;(1)證明:連接DO,∵∠EDC=90°,F(xiàn)是EC的中點(diǎn),∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切線(xiàn);(3)解:如圖所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴,∴DC1=AD?DE∵AC=1DE,∴設(shè)DE=x,則AC=1x,則AC1﹣AD1=AD?DE,期(1x)1﹣AD1=AD?x,整理得:AD1+AD?x﹣10x1=0,解得:AD=4x或﹣4.5x(負(fù)數(shù)舍去),則DC=,故tan∠ABD=tan∠ACD=.25、詳見(jiàn)解析【解析】
由等邊三角形的性質(zhì)得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結(jié)論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 給同事的感謝信匯編十篇
- 簡(jiǎn)單辭職申請(qǐng)書(shū)模板匯編九篇
- 2021過(guò)中秋節(jié)作文【5篇】
- 八年級(jí)物理教學(xué)計(jì)劃模板八篇
- 生物類(lèi)實(shí)習(xí)報(bào)告模板集錦7篇
- 酒店辭職報(bào)告書(shū)集錦15篇
- 邊城讀后感匯編15篇
- 法律法規(guī)及事故案例講座
- 甘肅省定西市岷縣2024-2025學(xué)年九年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)歷史試卷(無(wú)答案)
- 交管12123駕駛證學(xué)法減分題庫(kù)及答案
- T∕ZSQX 008-2020 建設(shè)工程全過(guò)程質(zhì)量行為導(dǎo)則
- ISO-IEC17025-2017實(shí)驗(yàn)室管理體系全套程序文件
- 業(yè)務(wù)員手冊(cè)內(nèi)容
- pH值的測(cè)定方法
- 深圳智能水表項(xiàng)目商業(yè)計(jì)劃書(shū)_參考模板
- 輸出軸的機(jī)械加工工藝規(guī)程及夾具設(shè)計(jì)
- 元旦文藝匯演校長(zhǎng)致辭
- 國(guó)家開(kāi)放大學(xué)電大本科《管理案例分析》2023-2024期末試題及答案試卷編號(hào):1304
- 離合器接合叉機(jī)械工藝說(shuō)明書(shū)
- PWM脈寬直流調(diào)速系統(tǒng)設(shè)計(jì)及 matlab仿真驗(yàn)證
- 蜂窩煤成型機(jī)設(shè)計(jì)方案.doc
評(píng)論
0/150
提交評(píng)論