2024高考數(shù)學(xué)二輪專題復(fù)習(xí)測試專題強(qiáng)化練十二含解析_第1頁
2024高考數(shù)學(xué)二輪專題復(fù)習(xí)測試專題強(qiáng)化練十二含解析_第2頁
2024高考數(shù)學(xué)二輪專題復(fù)習(xí)測試專題強(qiáng)化練十二含解析_第3頁
2024高考數(shù)學(xué)二輪專題復(fù)習(xí)測試專題強(qiáng)化練十二含解析_第4頁
2024高考數(shù)學(xué)二輪專題復(fù)習(xí)測試專題強(qiáng)化練十二含解析_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

PAGE專題強(qiáng)化練(十二)1.已知雙曲線C:eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)的一條漸近線與直線2x-y+1=0垂直,則雙曲線C的離心率為()A.2 B.eq\r(2)C.eq\r(3) D.eq\r(5)解析:依題意,2·eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,b)))=-1,所以b=2a.則e2=1+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(b,a)))eq\s\up12(2)=5,所以e=eq\r(5).答案:D2.(2024·吉林省試驗中學(xué)第一次質(zhì)檢)已知橢圓C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的焦距為2,且短軸長為6,則C的方程為()A.eq\f(x2,9)+eq\f(y2,8)=1 B.eq\f(x2,10)+eq\f(y2,9)=1C.eq\f(x2,36)+eq\f(y2,35)=1 D.eq\f(x2,37)+eq\f(y2,36)=1+c2=10,所以C的方程為eq\f(x2,10)+eq\f(y2,9)=1.故選B.答案:B3.已知拋物線C:y2=2px(p>0)的焦點為F,直線l:y=x-1經(jīng)過點F,且分別交C于A、B兩點,則|AB|=()A.4eq\r(2) B.8C.8eq\r(2) D.12解析:因為直線l:y=x-1經(jīng)過點F,所以F(1,0),故eq\f(p,2)=1即p=2,所以C:y2=4x.設(shè)A(x1,y1),B(x2,y2),由eq\b\lc\{(\a\vs4\al\co1(y2=4x,,y=x-1,))可得x2-6x+1=0,故x1+x2=6,故|AB|=x1+1+x2+1=x1+x2+2=8.答案:B4.為響應(yīng)國家“節(jié)能減排,開發(fā)清潔能源”的號召,小華制作了一個太陽灶,如圖所示.集光板由拋物面(拋物線繞對稱軸旋轉(zhuǎn)得到)形的反光鏡構(gòu)成,已知鏡口圓的直徑為2m,鏡深0.25m,為達(dá)到最佳汲取太陽光的效果,容器灶圈應(yīng)距離集光板頂點()A.0.5米 B.1米C.1.5米 D.2米解析:若使汲取太陽光的效果最好,容器灶圈應(yīng)在拋物面對應(yīng)軸截面的拋物線的焦點處,如圖,畫出拋物面的軸截面,并建立坐標(biāo)系,設(shè)拋物線方程x2=2py,集光板端點A(1,0.25),代入拋物線方程可得2p=4,所以拋物線方程x2=4y,故焦點坐標(biāo)是F(0,1).所以容器灶圈應(yīng)距離集光板頂點1m.答案:B5.(2024·北京市東城區(qū)模擬)雙曲線C:x2-eq\f(y2,b2)=1的漸近線與直線x=1交于A,B兩點,且|AB|=4,那么雙曲線C的離心率為()A.eq\r(2) B.eq\r(3)C.2 D.eq\r(5)解析:由雙曲線的方程可得a=1,且漸近線的方程為:y=±bx,與x=1聯(lián)立可得y=±b,所以|AB|=|2b|,由題意可得4=2|b|,解得|b|=2,c2=a2+b2,所以雙曲線的離心率e=eq\f(c,a)=eq\r(\f(a2+b2,a2))=eq\r(\f(1+4,1))=eq\r(5),故選D.答案:D6.(2024·全國名校模擬)若雙曲線C:eq\f(y2,m)-eq\f(x2,9)=1的漸近線方程為y=±eq\f(2,3)x,則C的兩個焦點坐標(biāo)為()A.(0,±eq\r(5)) B.(±eq\r(5),0)C.(0,±eq\r(13)) D.(±eq\r(13),0)解析:因為雙曲線C:eq\f(y2,m)-eq\f(x2,9)=1的漸近線方程為y=±eq\f(2,3)x,所以eq\f(\r(m),3)=eq\f(2,3),解得m=4,所以雙曲線方程為eq\f(y2,4)-eq\f(x2,9)=1,所以雙曲線C的兩個焦點坐標(biāo)為(0,±eq\r(13)),故選C.答案:C7.(2024·開封模擬)已知F1,F(xiàn)2是橢圓E:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左,右焦點,點M在E上,MF2與x軸垂直,sin∠MF1F2=eq\f(1,3),則E的離心率為()A.eq\f(1,3) B.eq\f(1,2)C.eq\f(\r(2),2) D.eq\f(\r(3),2)=2a-eq\f(b2,a),由sin∠MF1F2=eq\f(1,3),可得3×eq\f(b2,a)=2a-eq\f(b2,a),解得eq\f(b2,a2)=eq\f(1,2),所以e=eq\r(1-\f(b2,a2))=eq\f(\r(2),2).答案:C8.(2024·石家莊調(diào)研)已知F1,F(xiàn)2分別為雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,=30°,且虛軸長為2eq\r(2),則雙曲線的標(biāo)準(zhǔn)方程為()A.eq\f(x2,4)-eq\f(y2,2)=1 B.eq\f(x2,3)-eq\f(y2,2)=1C.eq\f(x2,4)-eq\f(y2,8)=1 D.x2-eq\f(y2,2)=1解析:如圖,不妨設(shè)點P(x0,y0)在第一象限,則PF2⊥x軸,在Rt△PF1F2中,∠PF1F2=30°,|F1F2|=2c,則|PF2|=eq\f(2\r(3)c,3),|PF1|=eq\f(4\r(3)c,3),又因為|PF1|-|PF2|=eq\f(2\r(3)c,3)=2a,即c=eq\r(3)a.又2b=2eq\r(2),知b=eq\r(2),且c2-a2=2,從而得a2=1,c2=3.故雙曲線的標(biāo)準(zhǔn)方程為x2-eq\f(y2,2)=1.答案:D9.(2024·泉州模擬)已知橢圓E:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F2的直線2x+y-4=0與y軸交于點A,線段AF2與E交于點B.若|AB|=|BF1|,則E的方程為()A.eq\f(x2,40)+eq\f(y2,36)=1 B.eq\f(x2,20)+eq\f(y2,16)=1C.eq\f(x2,10)+eq\f(y2,6)=1 D.eq\f(x2,5)+y2=1解析:由題可得A(0,4),F(xiàn)2(2,0)所以c=2,又|AB|=|BF1|,所以2a=|BF1|+|BF2|=|AF2|=2eq\r(5),得a=eq\r(5),所以b=1,所以橢圓的方程為eq\f(x2,5)+y2=1.答案:D10.已知斜率為k1(k1≠0)的直線l與橢圓x2+eq\f(y2,4)=1交于A,B兩點,線段AB的中點為C,直線OC(O為坐標(biāo)原點)的斜率為k2,則k1·k2=()A.-eq\f(1,4) B.-4C.-eq\f(1,2) D.-2=2x0,y1+y2=2y0.因為A,B兩點在橢圓上,所以xeq\o\al(2,1)+eq\f(yeq\o\al(2,1),4)=1,xeq\o\al(2,2)+eq\f(yeq\o\al(2,2),4)=1.兩式相減得:xeq\o\al(2,1)-xeq\o\al(2,2)+eq\f(1,4)(yeq\o\al(2,1)-yeq\o\al(2,2))=0,(x1+x2)(x1-x2)+eq\f(1,4)(y1+y2)(y1-y2)=0,2x0(x1-x2)+eq\f(1,2)y0(y1-y2)=0,2+eq\f(1,2)·eq\f(y0(y1-y2),x0(x1-x2))=0,即2+eq\f(1,2)k1·k2=0,解得k1·k2=-4.答案:B=8x上運動,點Q在曲線(x-2)2+y2=1上運動,則eq\f(|PB|2,|PQ|)的最小值為()A.eq\r(3) B.4C.eq\r(5) D.6解析:設(shè)圓心為F,則F也為拋物線y2=8x的焦點,該拋物線的準(zhǔn)線方程為x=-2,設(shè)P(x,y),由拋物線的定義:|PF|=x+2,要使eq\f(|PB|2,|PQ|)最小,則|PQ|需最大,如圖,+1=x+3,且|PB|=eq\r((x-4)2+y2)=eq\r(x2+16).所以eq\f(|PB|2,|PQ|)=eq\f(x2+16,x+3),令x+3=t(t≥3),則x=t-3,所以eq\f(|PB|2,|PQ|)=t+eq\f(25,t)-6≥4,當(dāng)t=5時取“=”,此時x=2.所以eq\f(|PB|2,|PQ|)的最小值為4.答案:B12.(多選題)設(shè)M、N是拋物線x2=4y上的兩個不同的點,O是坐標(biāo)原點,若直線OM與ON的斜率之積為-eq\f(1,4),則下列結(jié)論正確的是()A.|OM|+|ON|≥5B.以MN為直徑的圓面積的最小值為4πC.直線MN過拋物線x2=4y的焦點D.點O到直線MN的距離不大于1解析:對于A選項,若MN與y軸垂直,設(shè)直線MN為y=a(a>0),則M(2eq\r(a),a),N(-2eq\r(a),a),所以kOM=eq\f(\r(a),2),kON=-eq\f(\r(a),2),所以kOM·kON=-eq\f(a,4)=-eq\f(1,4),所以a=1,即M(2,1),N(-2,1),此時|OM|+|ON|=2eq\r(5)<5,A選項錯誤;對于B、C選項,由題意可知直線MN斜率存在,設(shè)直線MN的方程為y=kx+m,+m>0,設(shè)點M(x1,y1)、N(x2,y2),則x1+x2=4k,x1x2=-4m,因為kOMkON=eq\f(y1y2,x1x2)=eq\f(xeq\o\al(2,1)xeq\o\al(2,2),16x1x2)=eq\f(x1x2,16)=-eq\f(m,4)=-eq\f(1,4),所以m=1,此時直線MN的方程為y=kx+1,恒過定點(0,1),C選項正確;因為|MN|=eq\r(1+k2)·|x1-x2|=eq\r(1+k2)·eq\r((x1+x2)2-4x1x2)=4(1+k2)≥4,所以,以MN為直徑的圓面積的最小值為4π,B選項正確;對于D選項,點O到直線MN的距離為d=eq\f(1,\r(k2+1))≤1,D選項正確.答案:BCD13.已知直線l過點(1,0)且垂直于x軸.若l被拋物線y2=4ax截得的線段長為4,則拋物線的焦點坐標(biāo)為________.解析:由題意知,a>0,對于y2=4ax,當(dāng)x=1時,y=±2eq\r(a),由于l被拋物線y2=4ax截得的線段長為4,所以4eq\r(a)=4,所以a=1,所以拋物線的焦點坐標(biāo)為(1,0).答案:(1,0)14.在平面直角坐標(biāo)系xOy中,若雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的右焦點F(c,0)到一條漸近線的距離為eq\f(\r(3),2)c,則其離心率的值是________.解析:不妨設(shè)雙曲線的一條漸近線方程為y=eq\f(b,a)x,所以eq\f(|bc|,\r(a2+b2))=b=eq\f(\r(3),2)c,所以b2=c2-a2=eq\f(3,4)c2,得c=2a,所以雙曲線的離心率e=eq\f(c,a)=2.答案:215.(2024·四川省南充市其次次模擬)已知F是拋物線C:y2=2px(p>0)的焦點,過F作直線與C相交于P,Q兩點,且Q在第一象限,若2eq\o(PF,\s\up14(→))=eq\o(FQ,\s\up14(→)),則直線PQ的斜率是__________.解析:設(shè)l是準(zhǔn)線,過P作PM⊥l于M,過Q作QN⊥l于N,=eq\o(FQ,\s\up14(→)),所以|QF|=2|PF|,所以|QN|=2|PM|,所以|QH|=|NH|=|PM|=|PF|,|PH|=eq\r((3|PF|)2-|PF|2)=2eq\r(2)|PF|,所以tan∠HQF=eq\f(|PH|,|QH|)=2eq\r(2),所以直線PQ斜率為2eq\r(2).答案:2eq\r(2)16.(2024·博雅聞道聯(lián)合質(zhì)檢)已知橢圓C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點,若橢圓C上存在點P(x0,y0)(x0≥0)使得∠PF1F2=30°,則橢圓的離心率的取值范圍為__________.解析:依據(jù)題意作圖如下:由圖可得:當(dāng)點P在橢圓的上(下)頂點處時,∠PF1F2最大,要滿意橢圓C上存在點P(x0,y0)(x≥0)使得∠PF1F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論