![福建省福州市閩侯第一中學(xué)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁](http://file4.renrendoc.com/view7/M01/0D/12/wKhkGWcGy-iACNH8AAHSfHqunR8067.jpg)
![福建省福州市閩侯第一中學(xué)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁](http://file4.renrendoc.com/view7/M01/0D/12/wKhkGWcGy-iACNH8AAHSfHqunR80672.jpg)
![福建省福州市閩侯第一中學(xué)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁](http://file4.renrendoc.com/view7/M01/0D/12/wKhkGWcGy-iACNH8AAHSfHqunR80673.jpg)
![福建省福州市閩侯第一中學(xué)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁](http://file4.renrendoc.com/view7/M01/0D/12/wKhkGWcGy-iACNH8AAHSfHqunR80674.jpg)
![福建省福州市閩侯第一中學(xué)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁](http://file4.renrendoc.com/view7/M01/0D/12/wKhkGWcGy-iACNH8AAHSfHqunR80675.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省福州市閩侯第一中學(xué)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若正三棱柱的所有棱長都相等,D是的中點,則直線AD與平面所成角的正弦值為A. B.C. D.2.在正項等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.323.如圖,在正三棱柱中,若,則C到直線的距離為()A. B.C. D.4.用3,4,5,6,7,9這6個數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),下列結(jié)論正確的有()A.在這樣的六位數(shù)中,奇數(shù)共有480個B.在這樣的六位數(shù)中,3、5、7、9相鄰的共有120個C.在這樣的六位數(shù)中,4,6不相鄰的共有504個D.在這樣六位數(shù)中,4個奇數(shù)從左到右按照從小到大排序的共有60個5.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六6.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個位數(shù)字為葉).考慮以下結(jié)論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標(biāo)準(zhǔn)差小于乙地該月時的氣溫的標(biāo)準(zhǔn)差;④甲地該月時的氣溫的標(biāo)準(zhǔn)差大于乙地該月時的氣溫的標(biāo)準(zhǔn)差.其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為()A.①③ B.①④C.②③ D.②④7.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)8.已知直線l1:y=x+2與l2:2ax+y﹣1=0垂直,則a=()A. B.C.﹣1 D.19.由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,另一組數(shù)據(jù)2、的中位數(shù)可以表示為()A. B.C. D.10.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數(shù)y(人)與月平均氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4個月的患?。ǜ忻埃┤藬?shù)與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數(shù)據(jù)算出線性回歸方程中的,氣象部門預(yù)測下個月的平均氣溫約為9℃,據(jù)此估計該社區(qū)下個月老年人與兒童患病人數(shù)約為()A.38 B.40C.46 D.5811.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設(shè)正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為012.下列命題中正確的是()A.函數(shù)最小值為2.B.函數(shù)的最小值為2.C.函數(shù)的最小值為D.函數(shù)的最大值為二、填空題:本題共4小題,每小題5分,共20分。13.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.14.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______15.橢圓的長軸長為______16.圓錐的軸截面是邊長為2的等邊三角形,為底面中心,為的中點,動點在圓錐底面內(nèi)(包括圓周).若,則點形成的軌跡的長度為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設(shè)為上一點,滿足,若直線與平面所成的角為,求二面角的余弦值.18.(12分)設(shè)分別為橢圓的左右焦點,過的直線l與橢圓C相交于A,B兩點,直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程19.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實數(shù)的取值范圍20.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關(guān)于軸的對稱點為.求的最大值及相應(yīng)的.21.(12分)在二項式展開式中,第3項和第4項的二項式系數(shù)比為.(1)求n的值及展開式中的常數(shù)項;(2)求展開式中系數(shù)最大的項是第幾項.22.(10分)已知點,橢圓:的離心率為,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點.設(shè)過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運算求出線面角的正弦值【詳解】取AC的中點為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點的坐標(biāo)后借助向量的運算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯誤2、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因為和為方程的兩根,所以,又因為數(shù)列是等比數(shù)列,所以,故選:C3、D【解析】取AC的中點O,建立如圖所示的空間直角坐標(biāo)系,根據(jù)點到線距離的向量求法和投影的定義計算即可.【詳解】由題意知,,取AC的中點O,則,建立如圖所示的空間直角坐標(biāo)系,則,所以,所以在上的投影的長度為,故點C到直線距離為:.故選:D4、A【解析】A選項,特殊位置優(yōu)先考慮求出這樣的六位數(shù)中,奇數(shù)個數(shù);B選項,相鄰問題捆綁法求解;C選項,不相鄰問題插空法求解;D選項,定序問題使用倍縮法求解.【詳解】用3,4,5,6,7,9這6個數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),個位為3,5,7,9中的一位,有種,其余五個數(shù)位上的數(shù)字進行全排列,有種,綜上:在這樣的六位數(shù)中,奇數(shù)共有個,A正確;在這樣的六位數(shù)中,3、5、7、9相鄰,將3、5、7、9捆綁,有種排法,再與4,6進行全排列,故共有個,B錯誤;在這樣的六位數(shù)中,4,6不相鄰,先將3、5、7、9進行全排列,再從五個位置中任選兩個將4,6排列,綜上共有個,C錯誤;在這樣的六位數(shù)中,4個奇數(shù)從左到右按照從小到大排序的共有個,D錯誤.故選:A5、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:6、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標(biāo)準(zhǔn)差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標(biāo)準(zhǔn)差為由莖葉圖知乙地該月時的平均氣溫為,標(biāo)準(zhǔn)差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標(biāo)準(zhǔn)差小于甲的標(biāo)準(zhǔn)差,故④正確,故正確的是①④,故選:B7、C【解析】根據(jù)確定平面的條件可對每一個選項進行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C8、A【解析】利用兩直線垂直斜率關(guān)系,即可求解.【詳解】直線l1:y=x+2與l2:2ax+y﹣1=0垂直,.故選:A【點睛】本題考查兩直線垂直間的關(guān)系,屬于基礎(chǔ)題.9、C【解析】先根據(jù)題意對數(shù)據(jù)進行排列,然后由中位數(shù)的定義求解即可【詳解】因為由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,所以另一組數(shù)據(jù)2、從小到大的排列為,所以這一組數(shù)的中位數(shù)為,故選:C10、B【解析】由表格數(shù)據(jù)求樣本中心,根據(jù)線性回歸方程過樣本中心點,將點代入方程求參數(shù),寫出回歸方程,進而估計下個月老年人與兒童患病人數(shù).【詳解】由表格得為,由回歸方程中的,∴,解得,即,當(dāng)時,.故選:B.11、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D12、D【解析】根據(jù)基本不等式知識對選項逐一判斷【詳解】對于A,時為負值,故A錯誤對于B,,而無解,無法取等,故B錯誤對于,當(dāng)且僅當(dāng)即時等號成立,故,D正確,C錯誤故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:14、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:215、4【解析】把橢圓方程化成標(biāo)準(zhǔn)形式直接計算作答.【詳解】橢圓方程化為:,令橢圓長半軸長為a,則,解得,所以橢圓的長軸長為4.故答案為:416、【解析】建立空間直角坐標(biāo)系設(shè),,,,于是,,因為,所以,從而,,此為點形成的軌跡方程,其在底面圓盤內(nèi)的長度為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由三角形的邊角關(guān)系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.(2)以點為坐標(biāo)原點,,,分別為,,軸建立空間坐標(biāo)系,利用空間向量法求出二面角的余弦值.【詳解】解析:(1)證明:由,,,,,所以,又,∴,∴,∴,因為底面,底面,∴.因為,底面,底面,底面,底面,所以面面.(2)由(1)可知為與平面所成的角,∴,∴,,由及,可得,,以點為坐標(biāo)原點,,,分別為,,軸建立空間坐標(biāo)系,則,,,,設(shè)平面的法向量為,則,,取,設(shè)平面的法向量為,則,,取,所以,所以二面角余弦值為.【點睛】本題考查面面垂直的判定,線面垂直的性質(zhì),利用空間向量法求二面角的余弦值,屬于中檔題.18、(1)(2)【解析】(1)求得直線的方程,利用點到直線的距離列方程,由此求得,進而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡得,設(shè),則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.19、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合已知條件可得出關(guān)于實數(shù)、的方程組,即可解得實數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實數(shù)的取值范圍.【小問1詳解】解:的對稱軸是,又,所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,取最小值,當(dāng)時,取最大值,即,解得.【小問2詳解】解:由(1)知:,所以,,又,,令,則在上是增函數(shù).所以,,要使在上恒成立,只需,因此,實數(shù)的取值范圍為20、(1);(2),.【解析】(1)根據(jù)題意可得,然后根據(jù),,計算可得,最后可得結(jié)果.(2)假設(shè)直線的方程為,根據(jù)與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點到的距離,計算,利用函數(shù)性質(zhì)可得結(jié)果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設(shè)直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.21、(1),常數(shù)項為(2)5【解析】(1)求出二項式的通項公式,求出第3項和第4項的二項式系數(shù),再利用已知條件列方程求出的值,從而可求出常數(shù)項,(2)設(shè)展開式中系數(shù)最大的項是第項,則,從而可求出結(jié)果【小問1詳解】二項式展開式的通項公式為,因為第3項和第4項的二項式系數(shù)比為,所以,化簡得,解得,所以,令,得,所以常數(shù)項為【小問2詳解】設(shè)展開式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 13《我能行》(說課稿)-2023-2024學(xué)年統(tǒng)編版道德與法治二年級下冊
- Unit 6 How do you feel Part B Read and Write(說課稿)-2024-2025學(xué)年人教PEP版英語六年級上冊
- 6《一封信》說課稿-2024-2025學(xué)年統(tǒng)編版語文二年級上冊
- 12 低碳生活每一天 第二課時 說課稿-2023-2024學(xué)年道德與法治四年級上冊統(tǒng)編版001
- 2025城市房屋拆遷安置補償合同
- 公司轉(zhuǎn)讓工程合同范本
- 6《探訪古代文明》說課稿-2023-2024學(xué)年道德與法治六年級下冊統(tǒng)編版
- 鋁合金踢腳線施工方案
- 項目租車方案
- 住建部 認購合同范例
- 特魯索綜合征
- 視頻監(jiān)控系統(tǒng)工程施工組織設(shè)計方案
- 食堂食材配送采購 投標(biāo)方案(技術(shù)方案)
- 2024年山東省泰安市高考語文一模試卷
- 全國助殘日關(guān)注殘疾人主題班會課件
- TCL任職資格體系資料HR
- 《中國古代寓言》導(dǎo)讀(課件)2023-2024學(xué)年統(tǒng)編版語文三年級下冊
- 五年級上冊計算題大全1000題帶答案
- 工會工作制度匯編
- 工程建設(shè)行業(yè)標(biāo)準(zhǔn)內(nèi)置保溫現(xiàn)澆混凝土復(fù)合剪力墻技術(shù)規(guī)程
- 液壓動力元件-柱塞泵課件講解
評論
0/150
提交評論