




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省師范大學附中2025屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件2.半徑為的半圓卷成一個圓錐,則它的體積是()A. B.C. D.3.已知角的頂點為坐標原點,始邊為軸正半軸,終邊經(jīng)過點,則()A. B.C. D.4.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分圖象如圖所示,則函數(shù)f(x)的解析式為()A. B.C. D.5.已知向量,且,則的值為()A.1 B.2C. D.36.某幾何體的三視圖如圖所示,則該幾何體的表面積是A. B.C. D.7.已知設alog30.2,b30.2,c0.23,則a,b,c的大小關系是()A.abc B.acbC.bac D.bca8.已知函數(shù)的圖象與函數(shù)的圖象關于直線對稱,函數(shù)是奇函數(shù),且當時,,則()A. B.6C. D.79.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,其終邊與單位圓相交于點,則()A. B.C. D.10.若,,三點共線,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知命題“,”是真命題,則實數(shù)的取值范圍為__________12.已知函數(shù),若,則的取值范圍是__________13.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個零點,則實數(shù)m的取值范圍是_________.14.計算____________15.在平面四邊形中,,若,則__________.16.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,平面,,為棱上一點.(1)設為與的交點,若,求證:平面;(2)若,求證:18.已知函數(shù).(I)求函數(shù)的最小正周期及在區(qū)間上的最大值和最小值;(II)若,求的值.19.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)區(qū)間;(2)求函數(shù)在上的值域.20.解關于的不等式.21.設函數(shù)且是定義在上的奇函數(shù)(1)求的值;(2)若,試判斷函數(shù)的單調(diào)性不需證明,求出不等式的解集
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用充分條件和必要條件的定義分析判斷即可【詳解】當時,,當時,或,所以“”是“”的充分非必要條件,故選:A2、C【解析】求出扇形的弧長,然后求出圓錐的底面周長,轉(zhuǎn)化為底面半徑,求出圓錐的高,然后求出體積.【詳解】設底面半徑為r,則,所以.所以圓錐高.所以體積.故選:C.【點睛】本題考查圓錐的性質(zhì)及體積,圓錐問題抓住兩個關鍵點:(1)圓錐側(cè)面展開圖的扇形弧長等于底面周長;(2)圓錐底面半徑r、高h、母線l組成直角三角形,滿足勾股定理,本題考查這兩種關系的應用,屬于簡單題.3、A【解析】利用任意角的三角函數(shù)的定義,即可求得的值【詳解】角的頂點為坐標原點,始邊為軸正半軸,終邊過點.由三角函數(shù)的定義有:.故選:A4、A【解析】由圖觀察出和后代入最高點,利用可得,進而得到解析式【詳解】解:由圖可知:,,,,代入點,得,,,,,,故選.【點睛】本題考查了由的部分圖象確定其表達式,屬基礎題.5、A【解析】由,轉(zhuǎn)化為,結合數(shù)量積的坐標運算得出,然后將所求代數(shù)式化為,并在分子分母上同時除以,利用弦化切的思想求解【詳解】由題意可得,即∴,故選A【點睛】本題考查垂直向量的坐標表示以及同角三角函數(shù)的基本關系,考查弦化切思想的應用,一般而言,弦化切思想應用于以下兩方面:(1)弦的分式齊次式:當分式是關于角弦的次分式齊次式,分子分母同時除以,可以將分式由弦化為切;(2)弦的二次整式或二倍角的一次整式:先化為角的二次整式,然后除以化為弦的二次分式齊次式,并在分子分母中同時除以可以實現(xiàn)弦化切6、A【解析】由三視圖可知幾何體是一個底面為梯形的棱柱,再求幾何體的表面積得解.【詳解】由三視圖可知幾何體是一個底面為直角梯形的棱柱,梯形的上底為1,下底為2,高為2,棱柱的高為2.由題可計算得梯形的另外一個腰長為.所以該幾何體的表面積=.故答案為A【點睛】本題主要考查三視圖找原圖,考查幾何體的表面積的計算,意在考查學生對這些知識的掌握水平和空間想象分析推理能力.7、D【解析】由指數(shù)和對數(shù)函數(shù)單調(diào)性結合中間量0和1來比較a,b,c的大小關系即可有結果.【詳解】因為,,所以故選:D8、D【解析】先求出,再求出即得解.【詳解】由已知,函數(shù)與函數(shù)互為反函數(shù),則由題設,當時,,則因為為奇函數(shù),所以.故選:D9、C【解析】由已知利用任意角的三角函數(shù)求得,再由二倍角的余弦公式求解即可【詳解】解:因為角的終邊與單位圓相交于點,則,故選:C10、A【解析】先求出,從而可得關于的方程,故可求的值.【詳解】因為,,故,因為三點共線,故,故,故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】此題實質(zhì)上是二次不等式的恒成立問題,因為,函數(shù)的圖象拋物線開口向上,所以只要判別式不大于0即可【詳解】解:因為命題“,”是真命題,所以不等式在上恒成立由函數(shù)的圖象是一條開口向上的拋物線可知,判別式即解得所以實數(shù)的取值范圍是故答案為:【點睛】本題主要考查全稱命題或存在性命題的真假及應用,解題要注意的范圍,如果,一定要注意數(shù)形結合;還應注意條件改為假命題,有時考慮它的否定是真命題,求出的范圍.本題是一道基礎題12、【解析】畫出函數(shù)圖象,可得,,再根據(jù)基本不等式可求出.【詳解】畫出的函數(shù)圖象如圖,不妨設,因為,則由圖可得,,可得,即,又,當且僅當取等號,因為,所以等號不成立,所以解得,即的取值范圍是.故答案為:.13、(0,1)【解析】將方程的零點問題轉(zhuǎn)化成函數(shù)的交點問題,作出函數(shù)的圖象得到m的范圍【詳解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)與y=m的圖象,要使函數(shù)g(x)=f(x)﹣m有3個零點,則y=f(x)與y=m的圖象有3個不同的交點,所以0<m<1,故答案為(0,1)【點睛】本題考查等價轉(zhuǎn)化的能力、利用數(shù)形結合思想解題的思想方法是重點,要重視14、5【解析】由分數(shù)指數(shù)冪的運算及對數(shù)的運算即可得解.【詳解】解:原式,故答案為:5.【點睛】本題考查了分數(shù)指數(shù)冪的運算及對數(shù)的運算,屬基礎題.15、##1.5【解析】設,在中,可知,在中,可得,由正弦定理,可得答案.【詳解】設,在中,,,,在中,,,,,由正弦定理得:,得,.故答案為:.16、60°【解析】取BC的中點E,則,則即為所求,設棱長為2,則,三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】(1)只需證得,即可證得平面;(2)因為平面,平面,所以,即可證得平面,從而得證.試題解析:(1)在與中,因為,所以,又因為,所以在中,有,則.又因為平面,平面,所以平面.(2)因為平面,平面,所以.又因為,平面,平面,,所以平面,平面,所以18、(1)周期為,最大值為2,最小值為-1(2)【解析】(1)將函數(shù)利用倍角公式和輔助角公式化簡為,再利用周期可得最小正周期,由找出對應范圍,利用正弦函數(shù)圖像可得值域;(2)先利用求出,再由角的關系展開后代入可得值.試題解析:(1)所以又所以由函數(shù)圖像知.(2)解:由題意而所以所以所以=.考點:三角函數(shù)性質(zhì);同角間基本關系式;兩角和的余弦公式19、⑴,遞增區(qū)間,遞減區(qū)間⑵【解析】整理函數(shù)的解析式可得:.(1)由最小正周期公式和函數(shù)的解析式求解最小正周期和單調(diào)區(qū)間即可.⑵結合函數(shù)的定義域和三角函數(shù)的性質(zhì)可得函數(shù)的值域為.詳解】.(1),遞增區(qū)間滿足:,據(jù)此可得,單調(diào)遞增區(qū)間為,遞減區(qū)間滿足:,據(jù)此可得,單調(diào)遞減區(qū)間為.(2),,,,的值域為.【點睛】本題主要考查三角函數(shù)的性質(zhì),三角函數(shù)最值的求解等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、答案見解析【解析】不等式等價于,再分,和三種情況討論解不等式.【詳解】原不等式可化為,即,①當,即時,;②當,即時,原不等式的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 1 Knowing Me,Knowing You Using language 教學設計-2023-2024學年高中英語外研版(2019)必修第三冊
- 5 秋天的懷念2024-2025學年新教材七年級上冊語文新教學設計(統(tǒng)編版2024)
- 荷花淀教學設計
- 教師職業(yè)道德與學前教育政策法規(guī) 教案 7. 兒童觀
- 第1章 第1節(jié) 地球的形狀與大?。ㄐ陆虒W設計)2023-2024學年七年級上冊地理(星球版)
- 2025年惠州工程職業(yè)學院單招職業(yè)適應性測試題庫審定版
- 2024山西航空產(chǎn)業(yè)集團有限公司社會招聘315人筆試參考題庫附帶答案詳解
- Starter Unit 1 Hello!Section A 教學設計 2024-2025學年人教版英語七年級上冊
- 血液檢驗技術考試模擬題+答案
- 2025年新型高效電池項目發(fā)展計劃
- 個人合伙開店合同范本
- 生而為贏自燃成陽-開學第一課發(fā)言稿
- 2024年設備監(jiān)理師考試題庫及答案參考
- 公司外派學習合同范例
- 安徽省合肥市包河區(qū) 2024-2025學年九年級上學期期末道德與法治試卷(含答案)
- 廣州電視塔鋼結構施工方案
- 2024年湖南鐵路科技職業(yè)技術學院高職單招數(shù)學歷年參考題庫含答案解析
- 《梅大高速茶陽路段“5·1”塌方災害調(diào)查評估報告》專題警示學習
- 2024年06月江蘇昆山鹿城村鎮(zhèn)銀行校園招考筆試歷年參考題庫附帶答案詳解
- 小學二年級100以內(nèi)進退位加減法800道題
- 3ds Max動畫制作實戰(zhàn)訓練(第3版)教學教案
評論
0/150
提交評論