版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10923
ThirstyBusiness
AGlobalAnalysisofExtremeWeatherShocksonFirms
RobertaGatti
AsifM.Islam
CaseyMaue
EshaZaveri
WORLDBANKGROUP
MiddleEastandNorthAfricaRegion&PlanetVicePresidency
September2024
PolicyResearchWorkingPaper10923
Abstract
UsingglobaldatafromtheWorldBank’sEnterpriseSurveysthatincludestheprecisegeo-locationofsurveyedfirms,thispaperexamineshowdryspellsandprecipitationshocksinfluencefirmperformance.Thestudyfindsthatfirmsinareasthatexperiencedryspellshavelowerperformanceintermsofsales.Thisisparticularlytrueforsmallerfirmsandthoseindevelopingeconomies.Ahighernumberofextremedrydaysalsoincreasesthechancesthatafirmwillexitthemarket.Themainchannelsarelargelythroughlaborproductivityandinfrastructureservicedisruptionssuchaswaterandpoweroutages.Thereisalsosomeevidenceoflim-itedaccesstofinanceduetonegativeprecipitationshocks.
Governancemaybeanexacerbatingfactor,withnegativeprecipitationshocksincreasingexposuretocorruption.Yet,thereisalsosomeindicationthatdigitallyconnectedandinnovativefirmsaremoreresilienttonegativeprecipita-tionshocks.Processinnovation,websiteownership,anduseoftechnologylicensedfromforeignfirmsmediatetheeffectsofnegativeprecipitationshocksonfirmperformance.However,thereislittleevidenceofadaptation.Negativeprecipitationshockshavenoeffectonthepresenceofgreenmanagementpracticesorgreeninvestmentsforasubsetoffirmsforwhichsuchdataisavailable.
ThispaperisaproductoftheOfficeoftheChiefEconomist,MiddleEastandNorthAfricaRegionandtheOfficeoftheChiefEconomist,PlanetVicePresidency.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmaybecontactedataislam@
.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
ThirstyBusiness:AGlobalAnalysisofExtremeWeatherShocksonFirms*
RobertaGatti,AsifM.Islam,CaseyMaue,EshaZaveri
JELCodes:Q1,Q5,H54,O14,D73
Keywords:Precipitationshocks,firmproductivity,firm-levelanalysis,climatechange
*RobertaGattiisthechiefeconomistoftheMiddleEastandNorthAfricaRegionoftheWorldBank(email:rgatti@).AsifM.IslamisasenioreconomistintheMiddleEastandNorthAfricaChiefEconomistOffice(aislam@).EshaZaveriisaSeniorEconomistintheOfficeoftheChiefEconomistofthePlanetVice-PresidencyattheWorldBank(ezaveri@).CaseyMaueisapost-doctoralscholarattheUniversityofWashingtonSchoolofEnvironmentalandForestSciences(cmaue@).WewouldliketothankHananJacoby,RichardDamania,DanielLederman,PatrickBehrerandFanZhangforcommentsonanearlierversionofthepaper.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheWorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
2
ThirstyBusiness:AGlobalAnalysisofExtremeWeatherShocksonFirms*
1.Introduction
Thevariabilityofrainfall,definedasdeviationsfromitslong-termmean,isagrowingchallenge.Overthepastthreedecades,1.8billionpeople,orapproximately25percentofhumanity,haveenduredabnormalrainfallepisodeseachyear,whetheritwasaparticularlywetorunusuallydryyear(Damaniaetal.,2017).Withclimatechange,deviationsfromtrendsareprojectedtobecomemorepronouncedandfrequent.Droughtsandadversewatersupplyshocksareaparticularconcern,withdroughtfrequencyanddurationrisingbynearlyathirdgloballysince2000(TheUnitedNationsConventiontoCombatDesertification(UNCCD),2022)withlastingnegativeimpactsoneconomicgrowthindevelopingeconomies(Zaverietal.,2023;Russ,2020).
Whiletheeffectsofextremeweathereventsonagricultureandruralareashavereceivedconsiderableattention,therearealsoconsequencesforcitiesthatmayhavesignificantimplications.ThelastfewyearshaveseenseveralmajorcitieslikeCapeTowninSouthAfrica,S?oPaoloinBrazil,andChennaiinIndia,face“dayzero”typeeventsinwhichwatersuppliesbecomethreateninglylow,withcountlessmoremedium-sizeandsmallcitiesexperiencingintermittentwatersupplyandwatershortages(Zaverietal.,2021;Singhetal.,2021).Waterscarcitycansignificantlyimpacthouseholds,publicservices,andcriticalinfrastructuresystems,affectingworkersandentirecommunities(Damaniaetal.,2017;HylandandRuss,2019;IslamandHyland,2019).
Thevariedeffectsofextremeweathereventsontheprivatesectorarenotwellunderstood.Firmsareacriticalengineofeconomicgrowth.Theygeneratejobs,provideessentialproductsandservices,andencourageinnovation.Theylinkcitiesandtownstoglobalmarkets.Thisstudyexplorestheeffectof
3
droughts(negativeprecipitationshocks)onaglobalsampleoffirmsinurbancenters.Thestudyfindsthatnegativeprecipitationshockshurtfirmperformanceintermsofsales.Thisisparticularlytrueforsmallerfirmsandthoseindevelopingeconomies.Firmsthatexperiencenegativeprecipitationshocksarealsomorelikelytoexitthemarket.Anadditionalextremedrydayleadstoa0.6percentreductioninsales.Theaveragenumberofextremedrydaysinthesampleis6.7dayssuchthatanincreaseinextremedrydaysofthisamounttranslatestoa3.8percentreductioninsales.Atthesamplemaximumof86daysorabout3monthsofextremedrydays,thelossinsalescanriseto48.6percent.Sinceextremedrydaysalsoleadfirmstoexit,theseestimatesmayrepresentanunderestimateoftheoverallimpact.
Theliteraturehasidentifiedseveralchannelsthroughwhichextremeweathereventscouldaffectfirms.Onechannelisthroughhumancapital.Hotdayscouldleadtomoreabsenteeismorlowerthelaborproductivityofworkers(Somanathanetal.,2021).Anotherchannelisthroughinfrastructure.Negativeprecipitationshocks(droughts)increasetheintensityofwateroutagesthathurtsales(IslamandHyland,2019).Droughtsmayalsoincreasethefrequencyofpoweroutages(DesbureauxandRodella,2019).Accesstofinanceisanotherchannelidentifiedbytheliterature.Frequentclimateshocksmightaffecttheabilityofbankstopredictoutcomes,leadingtoanincreaseininterestratesduetoadditionalriskwhichcould,inturn,increasethecostofcapital(Klingetal.,2021).Extremeweathereventscouldalsoleadtobalancesheeterosionasfirmsthatexperiencemonetarylossesfromshocksbecomemoreleveragedastheyaremorelikelytogettheirloanapplicationsrejectedandbeseenaslesscreditworthy(Benincasaetal.,2024).Weathershockscanalsocreateliquidityshortagesandincreaseloandefaults,deterioratingcreditscoresandaccesstofuturecredit(Aguilar-Gomezetal.,2023).
Theeffectsofextremeweathereventsoninvestment,however,arenotobvious.Ononehand,ifweathershockslimitaccesstofinance,firmsarelesslikelytoinvest.Ontheotherhand,firmsaffectedbyweathershocksaremorelikelytoinvestinfixedassetsastheyreplenishdamagedcapital(Benincasaetal.,2024).Newinvestmentscanalsoleadtovintageeffectswherereplenishmentofcapitalmeansnewerequipment
4
withalowerenvironmentalfootprint.Alternatively,firmsmaybecomeenvironmentallyawareandthereforeengageingreeninvestmentsorgreenmanagementpractices.
TheEnterpriseSurveysallowsforthepossibilitytotestsomeofthesechannels.Themainchannelsarelargelyinfrastructureservicedisruptionssuchaswaterandpoweroutages.Thereissomeevidenceofeffectsthroughlaborproductivity(salesperworker)andalsolimitedaccesstofinance–negativeprecipitationshocksdecreasethelikelihoodthanfirmsusebankstofinancingworkingcapitalandhaveaccesstooverdraftfacilities.Anewchanneluncoveredinthisstudyisgovernance.Theintensityofnegativeprecipitationshocksincreasesexposuretocorruption.Whilethereisnoeffectuncoveredregardingweathershocksandinvestmentinmachineryandequipment,thiscouldbeduetothecountervailingeffectsoflimitedaccesstofinanceandtheneedtoreplacedamagedcapital.However,extremedrydaysdoincreasetheprobabilityofinvestinginlandandbuildings.Firmsthatareinnovativeintermsofprocess,havewebsiteownership,andusetechnologylicensedfromforeignfirmsexperiencemoremutedeffectsofextremedrydaysonfirmperformance.Thereisalsosomeevidencethatdigitaltechnologiesandinnovationcanbufferagainstclimateshocks(ZhaoandParhizgari,2024;Liuetal.,2023).Finally,foracross-sectionof2019surveyslargelyconductedintheMiddleEastandNorthAfricaandEuropeandCentralAsia,agreenmoduleincludedinthesurveyinstrumentcapturesgreeninvestmentsandgreenmanagementpractices.Thisstudyleveragesthisnewdataforasubsetoffirmswhereitisavailablebutfindsnocorrelationbetweenprecipitationshocksandgreenmanagementpracticesorgreeninvestments.Oneexplanationcouldbethatfirmsmightadoptsuchpracticesonlyafterrepeateddryspellsovertime.However,thesesurveyquestionsarelimited.Adoptionofgreenmanagementpracticesorinvestmentsarecapturedthroughabinaryvariable–whereavalueof1meansadoptionand0impliesnoadoption-thatpertainsonlytothreeyearspriortothesurvey.Henceafirmthatadoptedanygreenmanagementpracticesormadegreeninvestments4yearspriormaybecodedasazero.Therefore,thesefindingsshouldbeinterpretedwithcare.
5
Severalpolicyimplicationscanbedrawnfromthefindingsofthestudy.First,theresultsrevealthatsmallerfirms,andthoseindevelopingeconomiesaremoresusceptibletoclimateshocks.Buildingresilienceamongsmallerfirmsandthoseindevelopingeconomiesisessential.Second,waterandpowerinfrastructurearecentraltothenarrative.Asclimatechangemakesprecipitationpatternsmorevariableandunpredictable,investmentsinpublicwaterandpowerinfrastructuresystemsareanimportantwayinwhichgovernmentscanhelpfirmsadapt.Second,institutionsmatter,andgovernancemayplayacriticalroleinhowfirmsfareafterextremeweatherevents.Third,encouraginginnovationisonewaytobuildresilienceinfirms.Finally,extremeweathereventsmaynotnecessarilyleadfirmstoadapt,andthusotherpolicyinterventionswouldbeneededtoincreasegreenmanagementpracticesandgreeninvestments.
Insummary,thestudymakesthefollowingcontributionstotheliterature.First,thestudyprovidesaglobalanalysisofextremeweathereventsandfirmperformance.Second,ittestsseveralchannelsthroughwhichtheeffectsofnegativeprecipitationshockscanbeidentifiedintheliteraturewhileproposinganewchannelrelatedtogovernance.Third,thestudyexploresthetypesoffirmsthataremoreresilienttoshocks.Andfourth,thestudyusesauniquedatasettodispelthenotionthatfirmsmaybecomeenvironmentallyawareafterclimacticshocks.
Therestofthepaperisstructuredasfollows.Section2describesthedataandtheempiricalapproach.Section3providestheresultswithrobustnesschecks.Section4concludes.
2.EmpiricalApproach
2.1Data
2.1.1EnterpriseSurveys
Themaindatasourceiscross-sectionalfirm-levelsurveysacrosstheworldfromtheWorldBank’sEnterpriseSurveys(ES).TheESarenationallyrepresentativesurveysofprivateformal(registered)firms
6
with5ormoreemployeesandcovermanufacturingandservicesfirmslargelycollectedviaface-to-faceinterviewswithbusinessownersortopmanagers.Oursamplefortheanalysisisrestrictedtofirmsthathavegeo-locatedinformation.Thefinalsampleconsistsofabout88,000firms(dependingonthespecification)across174surveysover118economiesinthetimeperiod2009-2019.SummarystatisticsareprovidedintableA1.ThefulllistofcountriesandsurveyyearsarepresentedintableA2.Inaddition,forcountrieswheretherewereseveralroundsofsurveys,wecantrackwhetherthefirmexitedthemarketregardlessofwhethertheywerere-interviewedinsuccessivewaves.Wecanobtaininformationonfirmexitacross55countries.
TheESmethodologyincludesaconsistentdefinitionoftheuniverseofinference,astandardsamplingmethodology,astandardizedsurveyinstrument,andauniformmethodologyofimplementation.Theselectionoffirmsineachcountryisachievedbystratifiedrandomsamplingwiththreelevelsofstratification:sector,size,andlocationwithinthecountry.Samplingweightsareusedtocorrectforunequalprobabilityofselection,ineligibilityandnon-response.ThedataarelargelycollectedusingComputer-AssistedPersonalInterviewing(CAPI)software.TheCAPIsoftwarecollectsgeocoordinatesofthefirm’slocationthatweusetomatchrainfallandtemperaturedatawiththefirm-leveldata.Tomaintainanonymityoftherespondents,thegeo-codesaremaskedarounda2kmradius.
Thesurveysareimplementeduniformlyacrosscountries.Formaltrainingsessionsofsupervisorsandenumeratorsareundertakentoensurethebestpracticesareemployedconsistently.Qualitycontrolchecksareimplementedtoguaranteethequalityofthedatathroughoutthedatacollectionprocess.Consistencychecksareemployedfor10%and50%batchesofthedataduringthesurveytofacilitatecallbackstorespondentstobeundertakenwhennecessarytoverifyinformation.InformationontheEnterpriseSurveysglobalmethodologyandonthesampledesignandweightscomputationisavailableonthewebsite
.Thedatahavebeenwidelyusedby
severalstudiesanalyzingtheprivatesectorindevelopingeconomies(Besley&Mueller,2018;Chauvet&Ehrhar,2018;Hjort&Poulsen,2019).
7
2.1.2PrecipitationShocks
Tomeasureprecipitationshocks,weusereanalysisdataproducedbytheEuropeanCentreforMedium-RangeWeatherForecasts(ECMWF).Morespecifically,weusethenewlandcomponentofthefifthgenerationofEuropeanReAnalysis(ERA5),hereafterreferredtoasERA-5Landdataset(Mu?oz-Sabateretal.,2021).ThisdatasetisproducedbytheECMWFaspartoftheongoingoperationsoftheCopernicusClimateChangeService(C3S),asubdivisionoftheCopernicusprogram,whichistheEarthObservationarmofthespaceprogramestablishedbytheEuropeanCommission.ERA5-Landisaglobal-scaledatasetthatcontainshourlyrecordsofmorethan50keymeteorologicalvariables(includingprecipitation)ata9kmspatialresolutionovertheperiodfrom1950tothepresent.TheserecordsareproducedbyrunningdownscaledmeteorologicalforcingsobtainedfromtheERA5climatereanalysis
1
throughahigh-resolutionlandsurfaceprocessmodeldevelopedbyECMWF.Forourapplication,weusethedailyaggregatedversionofthedataset,whichisfreelyprovidedontheCopernicusClimateDataStore(CDS)andaccessibleviaGoogleEarthEngine.
ThereareseveralkeyfeaturesoftheERA5-Landdata.First,asdetailedbelow,constructingtheprecipitationshockmeasurewefavorinouranalysisinvolvesnormalizingdailyrainfallobservationsagainstaday-of-yearandgrid-cellspecificclimatedistribution.Computingtherelevantmomentsoftheselocalizeddistributionsrequiresalong,consistentlymeasured,timeseriesofdailyrainfalldata.ReanalysisdatasetslikeERA5-Landhaveboththesefeatures.Second,witharesolutionof9km,theERA5-LanddataallowustomeasureprecipitationshockspreciselyintheexactareaswherethefirmsintheEnterpriseSurveysarelocated.Finally,withitscompleteglobalcoverage,usingERA5-Landmeanswecanconstructshockmeasuresforanylocationintheworld,andthusforeverysinglefirmintheESdata.Bycontrast,
1ForanoverviewofERA5,see(Hersbachetal.,2020).
8
rainfalldatasetsproducedbylong-runningEarth-observingsatellitesareoftenlowerresolution,havespatialortemporalgapsindatacoverage,andexhibitvariationinthefidelityandmethodologyofmeasurementsovertime.
Inourempiricalanalysis,ourpreferredmeasureofprecipitationshocksisavariablewecall`drydays’,whichvariesattheannualandsecondarysub-nationaladministrativeunit(ADM2)level.Toconstructthisvariable,westartwiththedailytotalprecipitationvaluesobservedinallERA5gridcellsthatarecontainedwithintheADM2unitswhereweobserveatleastonefirmintheESdata.Then,tofocusoncontemporaryclimateandmatchthetemporalcoverageoftheESdata,werestrictthedailydatatotheperiodfrom1990to2021.Wethencomputethelong-run(1990-2021)meanandstandarddeviationforeachdayoftheyearineachgridcell.Usingthesemomentsofthelocalclimatedistribution,wethenclassifywhethertheprecipitationobservedoneachdayismorethan1standarddeviationbelowthelong-runaverageforthatparticulardayoftheyear.Daysthatsatisfythisconditionareconsidered`dry’days.Finally,wesumacrossdayswithingrid-yearsandaverageacrossERA5gridcellswithinADM2unitstoarriveatthefinalmeasureofdrydaysthatweuseinourprimaryempiricalanalysis.Inmanyofourspecifications,wealsoincludeananalogousmeasureof`wet’days,whichcapturesthenumberofdaysinayearwhererainfallwasmorethan1standarddeviationabovethelong-runday-of-yearaverage.
Previousstudieshaveoftenmeasuredrainfallshocksintermsof(normalized)deviationsoftotalcumulativeannualorseasonalrainfallfromlocation-specificlong-runaverages.Standardizeddroughtindices,suchastheSPEIorPDSI,havealsobeenwidelyused.Relativetothesestandards,ourdry(wet)daysmeasurehastwokeyadvantages.First,ourmeasurecapturesextremedryness(wetness)eventsevenwhentheyoccuroveraperiodofjustafewdays(orevenjustasingleday).Thishelpsusidentifynonlineareffectswhich
9
canbedilutedwhenweatheroutcomesaremorecoarselyaveragedovertime.
2
Second,bynormalizingdailyrainfallvaluesrelativetoalocation-andday-of-yearspecificclimatedistribution,ourmeasureeffectivelysummarizesdeviationsinthetimingofrainfallthroughouttheyear.Forexample,ayearwhereprecipitationisexactlyequaltothelong-rundailyaverageoneverydayoftheyearwouldhavezerodrydaysandzerowetdays.Butayearwiththesametotalannualprecipitation,butwherethetimingofrainfallthroughouttheyearissignificantlyshifted,wouldhavemanydryandwetdays.Asaresult,whenweusedry(wet)daysasourmeasureofprecipitationshocks,wecancaptureeffectsonfirmsthatresultfromdisruptionstothenormaltimingofrainfallthroughouttheyear.
2.2EmpiricalApproach
Theempiricalapproachexploitscross-sectionalvariationintheESdatacombinedwithprecipitation
shocksattheADM2geographicalunit,whileaccountingforsub-nationalADM1fixedeffects.ThemainanalysisestimatestheeffectofprecipitationshocksattheADM2levelonsalesatthefirmlevelwhile
controllingfortemperatureandotherfirm-levelcontrols.Thefollowingregressionisestimated:
yiagst=β1shockgt+yxit+ss+αa+ηt+Eiagst(1)
Where:iindexesfirms,aindexessub-nationalADM1units,gindexesADM2units,sindexessector(2digitISIClevel)andtindexessurvey-years.NotethatADM2ismoregeographicallydisaggregatedunitthanADM1.yiagstisthelogofsales(inUSD).shockstrepresentsmeasuresofprecipitationshocks.ThemainprecipitationshockisnumberofdrydaysforaspecificADM2unit.Averagetemperatureisalsoaccountedforintheestimations.
2Inthisway,ourdry(wet)daysmeasureissimilarintothe`degree-days’temperaturevariablesusedinSchlenkerandRoberts’well-knownanalysisofU.S.maizeyields(Schlenker&Roberts,2009).
10
Weemployasmallsetoffirmlevelcontrol(X)intheestimation-whetherthefirmisamulti-firm,ageoffirm(inlogs),sizeoffirm(inlogs),exporterstatus,foreignownership,andwhetherthefirmhasacheckingorsavingsaccount.Sector(ISIC2digitlevel)andsurveyyearfixedeffectsarealsoincludedinthespecification.
Themainconcernoftheestimationsareomittedvariablebiasandselection.Thekeyidentifyingassumptioninthisanalysisisthattheexperienceofextremedrydaysinagivenyearisquasi-randomwithinagivenADM2unit.Abodyofempiricalclimatechangeliteraturehasexploitedrandomvariationsinweathertoestimateareduced-formproductionfunction-styleequation(Delletal.,2012;Felbermayretal.,2022;Kotzetal.,2022).Simultaneitybiasislessofaconcerngiventhatindividualfirmsareunlikelytoinfluenceprecipitationshocks.Toaddressomittedvariablebiasconcerns,wecontrolforavarietyofcontrolsatthefirm-level.Wealsoaccountfortime-invariantomittedvariablesattheADM1geographicallevelthroughADM1fixedeffects.Sincethenumberofdrydayshocksareexogenous,simultaneitybiasislessofaconcern.However,wecannotruleoutthepossibilitythatfirmlocationselectionisendogenoustoprecipitationshocks.Ifproductivefirmsmovetoareaswithfewershocks,thenitmayappearasthoughshocksarenegativelycorrelatedwithfirmperformancealthoughitisdriventosomeextentbyselection.Wetrytoaccountforthisconcernbyincludingcontrolsfordeterminantsoffirmproductivity.Also,giventhatoursampleonlyconsistsofsurvivingfirms,ourestimatesmayunderstatethetrueeffectiffirmsaredrivenoutofbusinessduetothesenegativeshocks.
Weexplorepotentialchannelsthroughwhichprecipitationshocksmayaffectsales.Weachievethisbyregressingvariousvariablesthathavebeenidentifiedintheliteratureasplausiblechannelsofclimaticshocksandotherright-handsidevariablesdefinedinequation(1).Finally,asubsampleoffirmsintheMiddleEastandNorthAfrica,andEuropeandCentralAsiasurveyedaroundtheyear2019wereaskedspecificquestionsongreeninvestmentsandadaptation.Weexploitthisdatatoevaluateiffirmswhoexperienceprecipitationshocksaremorelikelytoadoptvariousgreenmeasures.
11
3.Results
3.1MainResults
Table2providesthemainresults.Anincreaseindrydaysleadstoareductioninsales.Thecoefficientisstatisticallysignificantatthe5%level.Intermsofmagnitude,anadditionalextremedrydayleadstoa0.6percentreductioninsales.Theaverageno.ofextremedrydaysinthesampleis6.7dayssuchthatanincreaseinextremedrydaysofthisamounttranslatestoa3.8percentreductioninsales.Aonestandarddeviationincreaseinextremedrydays(12.9days)resultsina7.3percentreductioninsales.Notethattheaveragenumberofextremedrydaysincludesvaluesofzeroesforareasthatdidnotexperienceanyextremedryday.Attheveryextreme,thesamplemaximumforextremedrydaysis86days,about3months.Anincreaseofextremedrydaysofaround3monthsresultsina48.6percentlossinsales.Giventhatwealsofindthatextremedrydaysleadfirmstoexit,theseestimatesreflectthoseofsurvivingfirmsandmay,thus,underestimatetheoverallimpact.
Withregardstoothercovariatesintheestimation,wetdaysarepositivelycorrelatedwithsales,statisticallysignificantatthe1percentlevel.ThisisconsistentwithZaverietal.(2023),whofindthatpositiveprecipitationshockscanbeaboonfortheeconomy.Theestimatesforfirm-levelcovariatesareasexpected:thesizeofthefirm,ageofthefirm,foreignownership,exportingfirmsandthosethathaveaccesstocheckingaccountshavemoresales.Allcoefficientsarestatisticallysignificantatthe1percentlevelofsignificance.
Next,weexploreheterogeneitiesintermsoflevelofdevelopment,region,firmsize,andsector.Thesearereportedintable2.Theresultsshowthatfirmsindevelopingeconomiesaremorevulnerabletoextremedrydaysthanhigh-incomeeconomies.Thecoefficientofextremedrydaysisnegativeandstatisticallysignificantfordevelopingeconomieswhileforhigh-incomeeconomiesthecoefficientisstatistically
12
insignificantandalmosthalfthesizeasthatofdevelopingeconomiesinabsoluteterms.FirmsinLatinAmericaandtheCaribbeanaremuchmorevulnerabletoextremedrydaysthanotherregions.Itistheonlyregionforwhichthecoefficientofextremedrydaysisnegativeandstatisticallysignificant,aswellasthelargestamongalltheregionsintermsofmagnitude.ThecoefficientofextremedrydaysisnegativeforEastAsiaandthePacific,Sub-SaharanAfrica,andtheMiddleEastandNorthAfricaalbeitstatisticallyinsignificant.Smallerfirms,andfirmsinservicesectorsarealsomorevulnerabletoextremedrydaysthanlargefirmsandmanufacturingfirms.
3.2Channels
Weexploreanumberofchannelshighlightedintheliteraturethroughwhichnegativeprecipitationshocksmayaffectfirms.Theselargelyincludelaborproductivity,investment,infrastructureserviceinterruptions(powerandwateroutages),andaccesstofinance.Wealsoconsideranadditionalchannelnotmentionedintheliterature–corruption.
Themainfindingsarepresentedintable3.Extremedrydaysleadtolowerlaborproduct
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024院子買賣合同范本(含裝修)3篇
- 2025年度智能農(nóng)田除草機械化服務(wù)合同4篇
- 2024自動駕駛測試司機試驗合同
- 2024起重機租賃合同:含特種設(shè)備檢測與認證服務(wù)3篇
- 2025年度果樹觀光園果樹租賃經(jīng)營合同范本3篇
- 2024虛擬現(xiàn)實技術(shù)托管服務(wù)合同
- 2025年度彩鋼構(gòu)件回收與再利用合同3篇
- 2024版軟件開發(fā)項目分包協(xié)議3篇
- 2025年度商業(yè)地產(chǎn)租賃合同示范文本11篇
- 2025年度智慧城市建設(shè)承包經(jīng)營合同范本3篇
- 軟件項目應(yīng)急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運營管理限公司招聘專業(yè)技術(shù)人才5名高頻重點提升(共500題)附帶答案詳解
- 2024年民法典知識競賽考試題庫及答案(共50題)
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合卷(含答案)
- 2024中國汽車后市場年度發(fā)展報告
- 鈑金設(shè)備操作培訓(xùn)
- 感染性腹瀉的護理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 水利工程招標文件樣本
- 第17課 西晉的短暫統(tǒng)一和北方各族的內(nèi)遷(說課稿)-2024-2025學(xué)年七年級歷史上冊素養(yǎng)提升說課稿(統(tǒng)編版2024)
評論
0/150
提交評論