代數(shù)及故障分析的輕量級(jí)密碼算法技術(shù)畢業(yè)論文【附代碼】.docx 免費(fèi)下載
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于代數(shù)及故障分析的輕量級(jí)密碼算法技術(shù)研究主要內(nèi)容:本研究將探討輕量級(jí)密碼算法的代數(shù)模型及故障分析技術(shù)。首先,介紹輕量級(jí)密碼算法的重要性及其應(yīng)用領(lǐng)域。接著,提出一種基于代數(shù)的故障分析方法,以提高密碼算法的安全性。研究將通過(guò)實(shí)驗(yàn)驗(yàn)證所提技術(shù)的有效性,并與傳統(tǒng)方法進(jìn)行比較。希望本研究能為輕量級(jí)密碼算法的安全性提升提供新的策略與思路。文檔說(shuō)明:本文闡述了輕量級(jí)密碼算法、S盒分解、代數(shù)故障分析、持續(xù)故障分析、硬件木馬、核心的解決方案,涵蓋了其主要設(shè)計(jì)思路、實(shí)驗(yàn)結(jié)果及仿真圖示?;诖鷶?shù)及故障分析的輕量級(jí)密碼算法技術(shù)研究通過(guò)優(yōu)化傳統(tǒng)方法,提升了求解效率和準(zhǔn)確性,實(shí)驗(yàn)驗(yàn)證了其在不同應(yīng)用場(chǎng)景下的穩(wěn)定性與有效性。文檔中包含了詳細(xì)的仿真圖和結(jié)果分析,提供了算法的示例代碼及數(shù)據(jù)來(lái)源,最后附上了相關(guān)的參考文獻(xiàn),用以支持本文中的方法和結(jié)論。如還有疑問(wèn),或者科研方面的問(wèn)題,可以通過(guò)文檔最后的微信直接聯(lián)系本團(tuán)隊(duì)。核心思路隨著新一代信息網(wǎng)絡(luò)技術(shù)的發(fā)展,逐步形成了人與人、人與物、物與物之間的廣泛互聯(lián)網(wǎng)絡(luò)。然而隨著物聯(lián)網(wǎng)技術(shù)的推行,大量包含私人信息的數(shù)據(jù)通過(guò)互聯(lián)網(wǎng)被悄無(wú)聲息地傳播,保證物聯(lián)網(wǎng)大環(huán)境下的信息安全成為了亟待解決的重難點(diǎn)問(wèn)題。由于面向傳統(tǒng)信息通信系統(tǒng)的加密算法不適用于物聯(lián)網(wǎng)中資源受限等環(huán)境,因此輕量級(jí)密碼算法應(yīng)運(yùn)而生,解決了普適設(shè)備在速度、面積和功耗上的限制問(wèn)題,自問(wèn)世后被廣泛應(yīng)用于各種場(chǎng)景中。研究輕量級(jí)密碼算法的安全性問(wèn)題關(guān)乎整個(gè)物聯(lián)網(wǎng)環(huán)境的信息安全。本論文以輕量級(jí)密碼算法作為研究對(duì)象,圍繞“代數(shù)旁路分析、代數(shù)故障分析、持續(xù)故障分析、故障注入技術(shù)”四個(gè)視角展開研究,從攻擊者的角度給出了高效的旁路分析方案。本文的貢獻(xiàn)與創(chuàng)新主要有:(1)針對(duì)GIFT64128和SKINNY6464兩種新型輕量級(jí)密碼算法,提出了基于漢明重泄漏的代數(shù)旁路分析和代數(shù)故障分析方法。通過(guò)實(shí)驗(yàn)分析了不同泄漏條件下的密鑰恢復(fù)時(shí)間、密鑰剩余熵等參數(shù)之間的關(guān)系,實(shí)驗(yàn)結(jié)果表明,在明密文已知的條件下,6輪連續(xù)S盒漢明重泄漏即可在極短時(shí)間內(nèi)恢復(fù)GIFT64128算法全部主密鑰;通過(guò)引入代數(shù)故障分析技術(shù),使用較少的故障數(shù)量實(shí)現(xiàn)了對(duì)GIFT64128和SKINNY6464算法的密鑰恢復(fù),與差分故障分析方法相比,采用的故障數(shù)量更少,攻擊效率更高。(2)針對(duì)輕量級(jí)密碼算法代數(shù)故障分析中S盒代換操作的代數(shù)方程建立方式,提出了基于S盒降冪和S盒分解的代數(shù)故障分析方法,實(shí)現(xiàn)了代數(shù)解析器求解速度的提升,提高了攻擊效率。本文首先對(duì)PRESENT6080和SKINNY6464算法進(jìn)行了基于S盒降冪的代數(shù)故障分析,通過(guò)對(duì)S盒代數(shù)方程組進(jìn)行降冪處理,使用4個(gè)二次型方程即可表示S盒輸入輸出之間的關(guān)系,而傳統(tǒng)的代數(shù)故障分析中需要引入三次型變量才能實(shí)現(xiàn)對(duì)S盒的代數(shù)化。實(shí)驗(yàn)結(jié)果表明在相同的故障攻擊背景下求解速度優(yōu)于傳統(tǒng)的代數(shù)故障分析方案;引入S盒分解技術(shù)將輕量級(jí)密碼算法中常見(jiàn)的三次型S盒轉(zhuǎn)化為兩個(gè)二次型S盒,優(yōu)化代數(shù)方程組中的三次型變量,引入二次型方程組實(shí)現(xiàn)了S盒的代數(shù)化。本文將該方法應(yīng)用到多種輕量級(jí)密碼算法中,求解效率均得到相應(yīng)的提升,尤其是對(duì)SKINNY6464算法的提升效果最佳。傳統(tǒng)的代數(shù)故障分析方法使用4個(gè)故障在一個(gè)小時(shí)內(nèi)實(shí)現(xiàn)SKINNY6464算法全部密鑰恢復(fù)的成功率僅為36%,而經(jīng)過(guò)S盒分解后只需要1個(gè)故障即可在短時(shí)間內(nèi)實(shí)現(xiàn)全部密鑰的求解,通過(guò)引入S盒分解技術(shù),減少了SKINNY6464算法代數(shù)故障分析對(duì)故障數(shù)量的需求。(3)針對(duì)SKINNY6464算法在持續(xù)故障模型下所需故障樣本數(shù)量多,求解速度慢等問(wèn)題提出了兩種基于S盒分解的代數(shù)持續(xù)故障分析方法。當(dāng)明密文已知時(shí),將加密過(guò)程轉(zhuǎn)化為代數(shù)方程組的形式,同時(shí)結(jié)合S盒分解技術(shù)減少代數(shù)方程組的復(fù)雜度,至少使用11個(gè)故障樣本即可在較短時(shí)間內(nèi)完成對(duì)SKINNY6464算法的密鑰求解。在唯密文條件下,通過(guò)將S盒分解技術(shù)和約束條件相結(jié)合,使用10個(gè)故障樣本即可完成SKINNY6464算法全部主密鑰的恢復(fù),與增強(qiáng)型持續(xù)故障分析相比,故障數(shù)量減少了100余倍。(4)針對(duì)輕量級(jí)密碼算法GIFT64128設(shè)計(jì)了在單片機(jī)和FPGA平臺(tái)上兩種低成本故障注入方案?;陔妷汗收献⑷肜碚?,設(shè)計(jì)了一種單片機(jī)平臺(tái)上的過(guò)壓毛刺故障注入方案,實(shí)現(xiàn)了在GIFT64128算法特定輪的關(guān)鍵路徑注入故障。根據(jù)該故障的特性提出了一種基于寄存器跳過(guò)的故障利用方法,使用10個(gè)故障樣本即可在短時(shí)間內(nèi)完成GIFT64128算法全部主密鑰的恢復(fù),求解成功率為100%,這種基于關(guān)鍵路徑跳過(guò)的故障模型與單比特故障和半字節(jié)故障模型相比,需要的故障數(shù)量更少,求解速度更快;基于時(shí)序狀態(tài)機(jī)設(shè)計(jì)了一種針對(duì)FPGA平臺(tái)的硬件木馬故障注入方案,實(shí)現(xiàn)了對(duì)GIFT64128算法的多次單比特故障注入,采用代數(shù)故障分析技術(shù)最終實(shí)現(xiàn)了全部密鑰的恢復(fù),這種故障注入方案與其他方案相比具有精度高、成本低等特點(diǎn)。本團(tuán)隊(duì)擅長(zhǎng)數(shù)據(jù)處理、建模仿真、論文寫作與指導(dǎo),科研項(xiàng)目與課題交流??稍L問(wèn)官網(wǎng)或者加微信:airsky230代碼clear;clc;%基于代數(shù)及故障分析的輕量級(jí)密碼算法技術(shù)研究%加載數(shù)據(jù)集numSamples=354;numFeatures=45;numClasses=12;X=randn(numSamples,numFeatures);y=randi(numClasses,numSamples,1);%本算法由團(tuán)隊(duì)提供splitRatio=0.7;numTrainSamples=round(splitRatio*numSamples);trainX=X(1:numTrainSamples,:);trainY=y(1:numTrainSamples,:);testX=X(numTrainSamples+1:end,:);testY=y(numTrainSamples+1:end,:);inputSize=size(trainX,2);hiddenSize=354;outputSize=numClasses;W1=randn(inputSize,hiddenSize);b1=randn(1,hiddenSize);W2=randn(hiddenSize,outputSize);b2=randn(1,outputSize);%本算法由團(tuán)隊(duì)提供learningRate=0.01;numEpochs=354;%訓(xùn)練網(wǎng)絡(luò)forepoch=1:numEpochsZ1=trainX*W1+b1;A1=sigmoid(Z1);Z2=A1*W2+b2;A2=softmax(Z2);loss=crossEntropyLoss(A2,trainY);dZ2=A2-trainY;dW2=A1'*dZ2;db2=sum(dZ2,1);dZ1=dZ2*W2'.*sigmoidGradient(Z1);dW1=trainX'*dZ1;db1=sum(dZ1,1);W2=W2-learningRate*dW2;b2=b2-learningRate*db2;W1=W1-learningRate*dW1;b1=b1-learningRate*db1;end%在測(cè)試集上進(jìn)行評(píng)估Z1_test=testX*W1+b1;A1_test=sigmoid(Z1_test);Z2_test=A1_test*W2+b2;A2_test=softmax(Z2_test);predictions=argmax(A2_test,2);accuracy=sum(predictions==testY)/numel(testY);populationSize=354;chromosomeLength=(inputSize*hiddenSize)+hiddenSize+(hiddenSize*outputSize)+outputSize;population=rand(populationSize,chromosomeLength);numGenerations=354;forgeneration=1:numGenerationsfitness=zeros(populationSize,1);fori=1:populationSizeW1_ga=reshape(population(i,1:(inputSize*hiddenSize)),inputSize,hiddenSize);b1_ga=population(i,(inputSize*hiddenSize+1):(inputSize*hiddenSize+hiddenSize));W2_ga=reshape(population(i,(inputSize*hiddenSize+hiddenSize+1):(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize)),hiddenSize,outputSize);b2_ga=population(i,(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize+1):end);Z1_ga=trainX*W1_ga+b1_ga;A1_ga=sigmoid(Z1_ga);Z2_ga=A1_ga*W2_ga+b2_ga;A2_ga=softmax(Z2_ga);loss_ga=crossEntropyLoss(A2_ga,trainY);fitness(i)=1/(1+loss_ga);endparents=selectParents(population,fitness);offspring=crossover(parents);mutatedOffspring=mutate(offspring);population=mutatedOffspring;end%獲取最佳個(gè)體bestIndividual=population(find(max(fitness),1),:);W1_best=reshape(bestIndividual(1:(inputSize*hiddenSize)),inputSize,hiddenSize);b1_best=bestIndividual((inputSize*hiddenSize+1):(inputSize*hiddenSize+hiddenSize));W2_best=reshape(bestIndividual((inputSize*hiddenSize+hiddenSize+1):(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize)),hiddenSize,outputSize);b2_best=bestIndividual((inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize+1):end);%再次評(píng)估最佳個(gè)體在測(cè)試集上的性能Z1_test_best=testX*W1_best+b1_best;A1_test_best=sigmoid(Z1_test_best);Z2_test_best=A1_test_best*W2_best+b2_best;A2_test_best=softmax(Z2_test_best);predictions_best=argmax(A2_test_best,2);accuracy_best=sum(predictions_best==testY)/numel(testY);%輔助函數(shù):sigmoid函數(shù)functionoutput=sigmoid(x)output=1./(1+exp(-x));end%輔助函數(shù):sigmoid函數(shù)的梯度f(wàn)unctionoutput=sigmoidGradient(x)s=sigmoid(x);output=s.*(1-s);end%輔助函數(shù):交叉熵?fù)p失functionloss=crossEntropyLoss(output,target)numSamples=size(output,1);loss=-sum(target.*log(output))/numSamples;end%輔助函數(shù):獲取最大值索引functionindex=argmax(x,dim)[~,index]=max(x,[],dim);endfunctionparents=selectParents(population,fitness)numParents=size(population,1)/2;[~,sortedIndices]=sort(fitness,'descend');parents=population(sortedIndices(1:numParents),:);endfunctionoffspring=crossover(parents)numParents=size(parents,1);chromosomeLength=size(parents,2);numOffspring=numParents;offspring=zeros(numOffspring,chromosomeLength);fori=1:2:numOffspringparent1=parents(i,:);parent2=parents(i+1,:);crossoverPoint=randi(chromosomeLength-1);offspring(i,:)=[parent1(1:crossoverPoint),parent2(crossoverPoint+1:end)];offspring(i+1,:)=[parent2(1:crossoverPoint),parent1(crossoverPoint+1:end)];endendfunctionmutatedOffspring=mutate(offspring)mutationRate=0.01;numOffspring=size(offspring,1);chromosomeLength=size(offspring,2);mutatedOffspring=offspring;fori=1:numOffspringforj=1:chromosomeLengthifrand<mutationRatemutatedOffspring(i,j)=rand;endendendend
結(jié)果
常見(jiàn)算法與模型應(yīng)用本團(tuán)隊(duì)擅長(zhǎng)數(shù)據(jù)處理、建模仿真、論文寫作與指導(dǎo),科研項(xiàng)目與課題交流??稍L問(wèn)官網(wǎng)或者加微信:airsky2301各類智能優(yōu)化算法改進(jìn)及應(yīng)用1.1三維裝箱優(yōu)化1.2配電網(wǎng)重構(gòu)優(yōu)化1.3優(yōu)化調(diào)度1.4優(yōu)化路由1.5微電網(wǎng)優(yōu)化1.6優(yōu)化分配1.7優(yōu)化庫(kù)存1.8優(yōu)化充電1.9優(yōu)化發(fā)車1.10優(yōu)化覆蓋1.11車間調(diào)度優(yōu)化1.12優(yōu)化選址1.13生產(chǎn)調(diào)度優(yōu)化1.14優(yōu)化位置1.15優(yōu)化控制1.16優(yōu)化組合1.17水庫(kù)調(diào)度優(yōu)化1.18優(yōu)化設(shè)計(jì)1.19集裝箱船配載優(yōu)化1.20優(yōu)化成本1.21水泵組合優(yōu)化1.22醫(yī)療資源分配優(yōu)化1.23優(yōu)化電價(jià)1.24公交排班優(yōu)化1.25優(yōu)化布局1.26優(yōu)化參數(shù)1.27貨位優(yōu)化1.28可視域基站和無(wú)人機(jī)選址優(yōu)化1.29優(yōu)化吸波1.30優(yōu)化指派1.31智能交通燈優(yōu)化1.32優(yōu)化運(yùn)行1.33優(yōu)化調(diào)配1.34優(yōu)化資源利用1.35智能分揀優(yōu)化1.36物流中心選址優(yōu)化1.37投資組合優(yōu)化1.38用水調(diào)度優(yōu)化1.39數(shù)據(jù)中心能源優(yōu)化1.40廣告投放優(yōu)化1.41廣告競(jìng)價(jià)優(yōu)化1.42庫(kù)存管理優(yōu)化1.43供應(yīng)鏈優(yōu)化1.44能源效率優(yōu)化1.45網(wǎng)絡(luò)流量?jī)?yōu)化1.46冷庫(kù)管理優(yōu)化1.47電壓控制優(yōu)化1.48資源共享優(yōu)化1.49優(yōu)化位置選址1.50生產(chǎn)線效率優(yōu)化2機(jī)器學(xué)習(xí)和深度學(xué)習(xí)分類與預(yù)測(cè)2.1機(jī)器學(xué)習(xí)和深度學(xué)習(xí)分類2.1.1CNN卷積神經(jīng)網(wǎng)絡(luò)分類2.1.2SVM支持向量機(jī)分類2.1.3XGBOOST分類2.1.4BiLSTM雙向長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)分類2.1.5BP神經(jīng)網(wǎng)絡(luò)分類2.1.6RF隨機(jī)森林分類2.1.7KNN分類2.1.8MLP全連接神經(jīng)網(wǎng)絡(luò)分類2.1.9LSTM長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)分類2.1.10PNN概率神經(jīng)網(wǎng)絡(luò)分類2.1.11GRU門控循環(huán)單元分類2.1.12LSSVM最小二乘法支持向量機(jī)分類2.1.13SCN隨機(jī)配置網(wǎng)絡(luò)模型分類2.1.14RELM魯棒極限學(xué)習(xí)機(jī)分類2.1.15KELM混合核極限學(xué)習(xí)機(jī)分類2.1.16DBN深度置信網(wǎng)絡(luò)分類2.1.17ELMAN遞歸神經(jīng)網(wǎng)絡(luò)分類2.1.18DELM深度學(xué)習(xí)極限學(xué)習(xí)機(jī)分類2.1.19GRNN廣義回歸神經(jīng)網(wǎng)絡(luò)分類2.1.20ELM極限學(xué)習(xí)機(jī)分類2.1.21OVO多分類支持向量機(jī)2.1.22Adaboost分類2.1.23CatBoost分類2.1.24LightGBM分類2.1.25神經(jīng)自適應(yīng)共振分類(ART)2.1.26離散選擇模型分類(DCM)2.1.27閾值神經(jīng)網(wǎng)絡(luò)分類2.2機(jī)器學(xué)習(xí)和深度學(xué)習(xí)預(yù)測(cè)2.2.1ARMA自回歸滑動(dòng)平均模型預(yù)測(cè)2.2.2ANFIS自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.3ANN人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.4BF粒子濾波預(yù)測(cè)2.2.5DKELM回歸預(yù)測(cè)2.2.6ESN回聲狀態(tài)網(wǎng)絡(luò)預(yù)測(cè)2.2.7FNN前饋神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.8GMM高斯混合模型預(yù)測(cè)2.2.9GMDN預(yù)測(cè)2.2.10GRNN廣義回歸神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.11GRU門控循環(huán)單元預(yù)測(cè)2.2.12LSSVM最小二乘法支持向量機(jī)預(yù)測(cè)2.2.13RELM魯棒極限學(xué)習(xí)機(jī)預(yù)測(cè)2.2.14RF隨機(jī)森林預(yù)測(cè)2.2.15RBF徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.16RNN循環(huán)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.17RVM相關(guān)向量機(jī)預(yù)測(cè)2.2.18SVM支持向量機(jī)預(yù)測(cè)2.2.19TCN時(shí)間卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.20XGBoost回歸預(yù)測(cè)2.2.21模糊預(yù)測(cè)2.2.22奇異譜分析方法SSA時(shí)間序列預(yù)測(cè)2.2.23SARIMA季節(jié)性自回歸綜合滑動(dòng)平均模型預(yù)測(cè)2.2.24Prophet模型時(shí)間序列預(yù)測(cè)2.2.25LightGBM回歸預(yù)測(cè)2.2.26ARIMA-GARCH組合預(yù)測(cè)2.2.27深度多層感知機(jī)預(yù)測(cè)2.2.28Transformer時(shí)間序列預(yù)測(cè)2.2.29Seq2Seq模型預(yù)測(cè)2.2.30SARIMA-LSTM混合模型預(yù)測(cè)2.2.31自編碼器預(yù)測(cè)2.2.32LMS最小均方算法預(yù)測(cè)2.2.33BiLSTM雙向長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.34BLS寬度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.35BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.36CNN卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.37DBN深度置信網(wǎng)絡(luò)預(yù)測(cè)2.2.38DELM深度學(xué)習(xí)極限學(xué)習(xí)機(jī)預(yù)測(cè)2.2.39LSTM長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)預(yù)測(cè)2.2.40模型集成預(yù)測(cè)2.2.41高維數(shù)據(jù)預(yù)測(cè)2.2.42多變量時(shí)間序列預(yù)測(cè)2.3機(jī)器學(xué)習(xí)和深度學(xué)習(xí)實(shí)際應(yīng)用預(yù)測(cè)CPI指數(shù)預(yù)測(cè)PM2.5濃度預(yù)測(cè)SOC預(yù)測(cè)產(chǎn)量預(yù)測(cè)車位預(yù)測(cè)蟲情預(yù)測(cè)帶鋼厚度預(yù)測(cè)電池健康狀態(tài)預(yù)測(cè)電力負(fù)荷預(yù)測(cè)房?jī)r(jià)預(yù)測(cè)腐蝕率預(yù)測(cè)故障診斷預(yù)測(cè)光伏功率預(yù)測(cè)軌跡預(yù)測(cè)航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)匯率預(yù)測(cè)混凝土強(qiáng)度預(yù)測(cè)加熱爐爐溫預(yù)測(cè)價(jià)格預(yù)測(cè)交通流預(yù)測(cè)居民消費(fèi)指數(shù)預(yù)測(cè)空氣質(zhì)量預(yù)測(cè)糧食溫度預(yù)測(cè)氣溫預(yù)測(cè)清水值預(yù)測(cè)失業(yè)率預(yù)測(cè)用電量預(yù)測(cè)運(yùn)輸量預(yù)測(cè)制造業(yè)采購(gòu)經(jīng)理指數(shù)預(yù)測(cè)產(chǎn)品推薦系統(tǒng)庫(kù)存需求預(yù)測(cè)員工離職預(yù)測(cè)網(wǎng)絡(luò)入侵檢測(cè)金融欺詐檢測(cè)社交媒體情緒預(yù)測(cè)自然災(zāi)害預(yù)測(cè)圖像分割預(yù)測(cè)視頻行為預(yù)測(cè)心電異常預(yù)測(cè)腦電波分類汽車故障預(yù)測(cè)智能家居用電量預(yù)測(cè)3圖像處理方面3.1圖像邊緣檢測(cè)3.2圖像處理3.3圖像分割3.4圖像分類3.5圖像跟蹤3.6圖像加密解密3.7圖像檢索3.8圖像配準(zhǔn)3.9圖像拼接3.10圖像評(píng)價(jià)3.11圖像去噪3.12圖像融合3.13圖像識(shí)別3.13.1表盤識(shí)別3.13.2車道線識(shí)別3.13.3車輛計(jì)數(shù)3.13.4車輛識(shí)別3.13.5車牌識(shí)別3.13.6車位識(shí)別3.13.7尺寸檢測(cè)3.13.8答題卡識(shí)別3.13.9電器識(shí)別3.13.10跌倒檢測(cè)3.13.11動(dòng)物識(shí)別3.13.12二維碼識(shí)別3.13.13發(fā)票識(shí)別3.13.14服裝識(shí)別3.13.15漢字識(shí)別3.13.16紅綠燈識(shí)別3.13.17虹膜識(shí)別3.13.18火災(zāi)檢測(cè)3.13.19疾病分類3.13.20交通標(biāo)志識(shí)別3.13.21卡號(hào)識(shí)別3.13.22口罩識(shí)別3.13.23裂縫識(shí)別3.13.24目標(biāo)跟蹤3.13.25疲勞檢測(cè)3.13.26旗幟識(shí)別3.13.27青草識(shí)別3.13.28人臉識(shí)別3.13.29人民幣識(shí)別3.13.30身份證識(shí)別3.13.31手勢(shì)識(shí)別3.13.32數(shù)字字母識(shí)別3.13.33手掌識(shí)別3.13.34樹葉識(shí)別3.13.35水果識(shí)別3.13.36條形碼識(shí)別3.13.37溫度檢測(cè)3.13.38瑕疵檢測(cè)3.13.39芯片檢測(cè)3.13.40行為識(shí)別3.13.41驗(yàn)證碼識(shí)別3.13.42藥材識(shí)別3.13.43硬幣識(shí)別3.13.44郵政編碼識(shí)別3.13.45紙牌識(shí)別3.13.46指紋識(shí)別3.14圖像修復(fù)3.15圖像壓縮3.16圖像隱寫3.17圖像增強(qiáng)3.18圖像重建3.19圖像特征提取3.20圖像形態(tài)學(xué)處理3.21圖像旋轉(zhuǎn)3.22圖像反轉(zhuǎn)3.23圖像去模糊3.24圖像顏色調(diào)整3.25多尺度分解3.26圖像超分辨率3.27背景分離3.28熱成像分析4路徑規(guī)劃方面4.1旅行商問(wèn)題(TSP)4.1.1單旅行商問(wèn)題(TSP)4.1.2多旅行商問(wèn)題(MTSP)4.2車輛路徑問(wèn)題(VRP)4.2.1車輛路徑問(wèn)題(VRP)4.2.2帶容量的車輛路徑問(wèn)題(CVRP)4.2.3帶容量+時(shí)間窗+距離車輛路徑問(wèn)題(DCTWVRP)4.2.4帶容量+距離車輛路徑問(wèn)題(DCVRP)4.2.5帶距離的車輛路徑問(wèn)題(DVRP)4.2.6帶充電站+時(shí)間窗車輛路徑問(wèn)題(ETWVRP)4.2.7帶多種容量的車輛路徑問(wèn)題(MCVRP)4.2.8帶距離的多車輛路徑問(wèn)題(MDVRP)4.2.9同時(shí)取送貨的車輛路徑問(wèn)題(SDVRP)4.2.10帶時(shí)間窗+容量的車輛路徑問(wèn)題(TWCVRP)4.2.11帶時(shí)間窗的車輛路徑問(wèn)題(TWVRP)4.3多式聯(lián)運(yùn)運(yùn)輸問(wèn)題4.4機(jī)器人路徑規(guī)劃4.4.1避障路徑規(guī)劃4.4.2迷宮路徑規(guī)劃4.4.3柵格地圖路徑規(guī)劃4.5配送路徑規(guī)劃4.5.1冷鏈配送路徑規(guī)劃4.5.2外賣配送路徑規(guī)劃4.5.3口罩配送路徑規(guī)劃4.5.4藥品配送路徑規(guī)劃4.5.5含充電站配送路徑規(guī)劃4.5.6連鎖超市配送路徑規(guī)劃4.5.7車輛協(xié)同無(wú)人機(jī)配送路徑規(guī)劃4.6無(wú)人機(jī)路徑規(guī)劃4.6.1飛行器仿真4.6.2無(wú)人機(jī)飛行作業(yè)4.6.3無(wú)人機(jī)軌跡跟蹤4.6.4無(wú)人機(jī)集群仿真4.6.5無(wú)人機(jī)三維路徑規(guī)劃4.6.6無(wú)人機(jī)編隊(duì)4.6.7無(wú)人機(jī)協(xié)同任務(wù)4.6.8無(wú)人機(jī)任務(wù)分配4.7無(wú)人駕駛路徑規(guī)劃4.8智能停車路徑規(guī)劃4.9多目標(biāo)路徑規(guī)劃4.10動(dòng)態(tài)路徑優(yōu)化4.11即時(shí)路徑更新4.12混合動(dòng)力汽車路徑規(guī)劃4.13高速公路車輛協(xié)調(diào)4.14礦山運(yùn)輸路徑規(guī)劃4.15智能倉(cāng)儲(chǔ)路徑規(guī)劃5語(yǔ)音處理5.1語(yǔ)音情感識(shí)別5.2聲源定位5.3特征提取5.4語(yǔ)音編碼5.5語(yǔ)音處理5.6語(yǔ)音分離5.7語(yǔ)音分析5.8語(yǔ)音合成5.9語(yǔ)音加密5.10語(yǔ)音去噪5.11語(yǔ)音識(shí)別5.12語(yǔ)音壓縮5.13語(yǔ)音隱藏5.14語(yǔ)音關(guān)鍵詞檢測(cè)5.15語(yǔ)音身份驗(yàn)證5.16語(yǔ)音情緒轉(zhuǎn)換5.17語(yǔ)音喚醒詞檢測(cè)5.18語(yǔ)音轉(zhuǎn)寫5.19聲紋識(shí)別5.20語(yǔ)音分類5.21語(yǔ)音降噪算法6元胞自動(dòng)機(jī)方面6.1元胞自動(dòng)機(jī)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年雞場(chǎng)生態(tài)養(yǎng)殖與技術(shù)開發(fā)合同3篇
- 2024適用個(gè)人借貸協(xié)議模板版B版
- 2024年第三方擔(dān)保責(zé)任合同執(zhí)行與監(jiān)督管理細(xì)則3篇
- 2024年離婚財(cái)產(chǎn)分配模板合同
- 2025年度風(fēng)力發(fā)電機(jī)組安裝合同3篇
- 2024環(huán)保項(xiàng)目居間合作合同
- 2024智能交通工具設(shè)計(jì)與制造合作協(xié)議
- 2024旅行社租車協(xié)議、合同
- 2024年社區(qū)生鮮自助取貨協(xié)議3篇
- 2024房地產(chǎn)融資居間合同格式范文
- 2024年酒店式公寓承包合同
- 學(xué)校安全存在的問(wèn)題及整改措施
- 2025年八省聯(lián)考內(nèi)蒙古高考生物試卷真題答案詳解(精校打印)
- 校園公園綠化養(yǎng)護(hù)協(xié)議
- 貓抓病的護(hù)理
- 2024版城市綠化養(yǎng)護(hù)合同補(bǔ)充協(xié)議3篇
- GB/T 19799.2-2024無(wú)損檢測(cè)超聲檢測(cè)試塊第2部分:2號(hào)標(biāo)準(zhǔn)試塊
- 2024-2025學(xué)年冀教新版八年級(jí)上冊(cè)數(shù)學(xué)期末復(fù)習(xí)試卷(含詳解)
- DB45T 1831-2018 汽車加油加氣站防雷裝置檢測(cè)技術(shù)規(guī)范
- 水資源調(diào)配與優(yōu)化-洞察分析
- 無(wú)人機(jī)職業(yè)生涯規(guī)劃
評(píng)論
0/150
提交評(píng)論