咸寧市重點中學2025屆數(shù)學高三第一學期期末經(jīng)典模擬試題含解析_第1頁
咸寧市重點中學2025屆數(shù)學高三第一學期期末經(jīng)典模擬試題含解析_第2頁
咸寧市重點中學2025屆數(shù)學高三第一學期期末經(jīng)典模擬試題含解析_第3頁
咸寧市重點中學2025屆數(shù)學高三第一學期期末經(jīng)典模擬試題含解析_第4頁
咸寧市重點中學2025屆數(shù)學高三第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

咸寧市重點中學2025屆數(shù)學高三第一學期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于函數(shù),下列說法正確的是()A.函數(shù)的定義域為B.函數(shù)一個遞增區(qū)間為C.函數(shù)的圖像關于直線對稱D.將函數(shù)圖像向左平移個單位可得函數(shù)的圖像2.要得到函數(shù)的導函數(shù)的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍3.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線4.的展開式中的一次項系數(shù)為()A. B. C. D.5.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路6.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.7.在中,已知,,,為線段上的一點,且,則的最小值為()A. B. C. D.8.已知中,,則()A.1 B. C. D.9.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.10.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.11.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.12.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若滿足,且方向相同,則__________.14.設實數(shù),若函數(shù)的最大值為,則實數(shù)的最大值為______.15.已知函數(shù)是定義在上的奇函數(shù),其圖象關于直線對稱,當時,(其中是自然對數(shù)的底數(shù),若,則實數(shù)的值為_____.16.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發(fā)、行進步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達式.18.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.19.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學期望.20.(12分)選修4-4:坐標系與參數(shù)方程在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.21.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.22.(10分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補充在上面問題中并作答.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

化簡到,根據(jù)定義域排除,計算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域為,故錯誤;當時,,函數(shù)單調(diào)遞增,故正確;當,關于的對稱的直線為不在定義域內(nèi),故錯誤.平移得到的函數(shù)定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對稱,三角函數(shù)平移,意在考查學生的綜合應用能力.2、D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復合函數(shù)導數(shù)的計算,考查誘導公式,考查三角函數(shù)圖像變換,屬于基礎題.3、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.4、B【解析】

根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.5、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內(nèi)容進行分類討論,屬于基礎題型.6、A【解析】

函數(shù)的零點就是方程的解,設,方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學生分析問題解決問題的能力.7、A【解析】

在中,設,,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據(jù)已知條件結(jié)合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設,,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、、,為線段上的一點,則存在實數(shù)使得,,設,,則,,,,,消去得,,所以,,當且僅當時,等號成立,因此,的最小值為.故選:A.【點睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關鍵是理解是一個單位向量,從而可用、表示,建立、與參數(shù)的關系,解決本題的第二個關鍵點在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.8、C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.9、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計算它的體積即可.10、C【解析】

設,則,,,設,根據(jù)化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.11、D【解析】

設等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.12、D【解析】

中位數(shù)指一串數(shù)據(jù)按從小(大)到大(?。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由向量平行坐標表示計算.注意驗證兩向量方向是否相同.【詳解】∵,∴,解得或,時,滿足題意,時,,方向相反,不合題意,舍去.∴.故答案為:1.【點睛】本題考查向量平行的坐標運算,解題時要注意驗證方向相同這個條件,否則會出錯.14、【解析】

根據(jù),則當時,,即.當時,顯然成立;當時,由,轉(zhuǎn)化為,令,用導數(shù)法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調(diào)遞增,當時,,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數(shù)在函數(shù)中的應用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.15、【解析】

先推導出函數(shù)的周期為,可得出,代值計算,即可求出實數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點睛】本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關鍵就是結(jié)合函數(shù)的奇偶性與對稱軸推導出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.16、【解析】

根據(jù)組合的知識,結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質(zhì)上每個因式中各取一項的乘積,轉(zhuǎn)化為組合的知識,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,,(2)【解析】

(1)根據(jù)機器人的進行規(guī)律可確定、、的值;(2)首先根據(jù)機器人行進規(guī)則知機器人沿軸行進步,必須沿軸負方向行進相同的步數(shù),而余下的每一步行進方向都有兩個選擇(向上或向下),由此結(jié)合組合知識確定機器人的每一種走法關于的表達式,并得到的表達式,然后結(jié)合二項式定理及展開式的通項公式進行求解.【詳解】解:(1),,(2)設為沿軸正方向走的步數(shù)(每一步長度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數(shù))總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價于求中含項的系數(shù),為其中含項的系數(shù)為故.【點睛】本題考查組合數(shù)、二項式定理,考查學生的邏輯推理能力,推理論證能力以及分類討論的思想.18、(Ⅰ);(Ⅱ).【解析】

(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數(shù)根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數(shù)根.當時,易知當,方程在上有且只有一個實數(shù)根.此時方程在上也有一個實數(shù)根.滿足條件.綜上,實數(shù)的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數(shù)求參數(shù)范圍,考查學生的運算能力,是一道中檔題.19、(1)(2)詳見解析【解析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,所以要想領取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學期望等概率與統(tǒng)計的基礎知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應用意識.20、(1),(2)【解析】

試題分析:利用將極坐標方程化為直角坐標方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設點P的坐標為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標方程為x+y=1.設點P的坐標為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標方程化為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論