版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
遼寧省撫順市第十九中學2025屆高三數(shù)學第一學期期末預測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.22.已知集合A,B=,則A∩B=A. B. C. D.3.大衍數(shù)列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項的通項公式為()A. B. C. D.4.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.5.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”6.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.7.已知函數(shù)fx=sinωx+π6+A.16,13 B.18.已知數(shù)列中,,且當為奇數(shù)時,;當為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.9.函數(shù)的圖象大致為()A. B.C. D.10.根據(jù)如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.11.函數(shù)在上單調遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)12.已知,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國古代數(shù)學名著《九章算術》對立體幾何有深入的研究,從其中一些數(shù)學用語可見,譬如“憋臑”意指四個面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網(wǎng)格紙上每個小正方形的邊長為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為__________.14.函數(shù)的定義域是___________.15.若直線與直線交于點,則長度的最大值為____.16.設,則“”是“”的__________條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.18.(12分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.19.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.20.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數(shù)的取值范圍.21.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.22.(10分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸的交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.2、A【解析】
先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數(shù)軸中得出解集。3、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.4、B【解析】
每個式子的值依次構成一個數(shù)列,然后歸納出數(shù)列的遞推關系后再計算.【詳解】以及數(shù)列的應用根據(jù)題設條件,設數(shù)字,,,,,,,構成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數(shù)列的項歸納出遞推關系,從而可確定數(shù)列的一些項.5、B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.6、D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.7、A【解析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【點睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關鍵是能夠結合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關于參數(shù)的不等式.8、A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進而可求解.【詳解】當為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A【點睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.9、A【解析】
根據(jù)函數(shù)的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導數(shù)研究函數(shù)的單調區(qū)間和極值,屬于中檔題.10、C【解析】
根據(jù)程序圖,當x<0時結束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運行,x=1-2=-1<0,程序運行結束,得,故選C.【點睛】本題考查程序框圖,是基礎題.11、B【解析】
根據(jù)題意分析的圖像關于直線對稱,即可得到的單調區(qū)間,利用對稱性以及單調性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關于直線對稱,若函數(shù)在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質,以及函數(shù)單調性的應用,有一定綜合性,屬于中檔題。12、B【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性比較大小,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】三視圖還原如下圖:,由于每個面是直角,顯然外接球球心O在AC的中點.所以,,填。【點睛】三視圖還原,當出現(xiàn)三個尖點在一個位置時,我們常用“揪尖法”。外接球球心到各個頂點的距離相等,而直角三角形斜邊上的中點到各頂點的距離相等,所以本題的球心為AC中點。14、【解析】
由于偶次根式中被開方數(shù)非負,對數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數(shù)定義域的求法,屬于基礎題.15、【解析】
根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關系;考查數(shù)形結合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關鍵;屬于中檔題.16、充分必要【解析】
根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關系.【詳解】當時,有,故“”是“”的充分條件.當時,有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點睛】本題考查充分必要條件的判斷,可利用定義來判斷,也可以根據(jù)兩個條件構成命題及逆命題的真假來判斷,還可以利用兩個條件對應的集合的包含關系來判斷,本題屬于容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數(shù)方程,利用點到直線的距離公式結合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯(lián)立方程組,解得與的交點為,,則.(2)曲線的參數(shù)方程為(為參數(shù)),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【點睛】本題主要考查參數(shù)方程與普通方程的轉化及參數(shù)方程的基本性質、點到直線的距離公式等,屬于中檔題.18、(1);(2)見解析【解析】
(1)根據(jù)拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設直線,的方程分別為和且,,,可得,,,的坐標,進而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設,,則,根據(jù)直線的斜率不為0,設出直線的方程為,聯(lián)立直線和拋物線的方程,結合韋達定理,分別求出,,化簡,即可得證.【詳解】(1)拋物線C的焦點坐標為,且該點在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點F在線段上,可設直線,的方程分別為和且,,,則,,,.∴直線的方程為,即.又點在線段上,∴.∵P是的中點,∴∴,.由于,不重合,所以法二:設,,則當直線的斜率為0時,不符合題意,故可設直線的方程為聯(lián)立直線和拋物線的方程,得又,為該方程兩根,所以,,,.,由于,不重合,所以【點睛】本題考查拋物線的標準方程,考查拋物線的定義,考查直線與拋物線的位置關系,屬于中檔題.19、(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當時,恒成立,②當時,轉化為,設,求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當時,恒成立,所以.②當時,可化為,設,則,所以當時,,所以.綜上,的取值范圍是.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數(shù)的取值范圍是.【點睛】本題考查由存在性問題求參數(shù)的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.21、(1)(2)【解析】
(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.22、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質定理可得,為上靠近點的三等分點,中點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年重組葡激酶合作協(xié)議書
- 2025年系列脫氯劑合作協(xié)議書
- 2024年版簡易離婚合同:雙方同意條款版B版
- 2024混凝土合同范本
- 2024消防樓梯工程合同
- 2025年土方收購合同范本:綠色環(huán)保建材供應鏈管理協(xié)議3篇
- 2024年特許經(jīng)營合同標的詳細解讀
- 2024棋牌室租賃管理服務合同3篇
- 2025年協(xié)議離婚快速辦理與離婚協(xié)議書合同3篇
- 2025年度體育用品品牌贊助合同3篇
- 2024年華能黑龍江公司招聘筆試參考題庫含答案解析
- 居家適老化改造需求評估量化表
- 反意疑問句完
- 《大數(shù)據(jù)安全技術》課后題答案
- 肌理課件完整
- “約會”的DFMEA與PFMEA分析
- 教師朗誦稿《幸?!?7篇)
- 數(shù)據(jù)安全應急響應與處置
- 2023漢邦高科安防產(chǎn)品技術參數(shù)和檢測報告
- 急診課件:急性呼吸困難完整版
- 唐詩宋詞鑒賞(第二版)PPT完整全套教學課件
評論
0/150
提交評論