版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆福建省安溪六中數(shù)學(xué)高三第一學(xué)期期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位2.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元3.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.4.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.5.設(shè),點,,,,設(shè)對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.6.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.7.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]8.已知函數(shù),將的圖象上的所有點的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.9.設(shè),則()A. B. C. D.10.費馬素數(shù)是法國大數(shù)學(xué)家費馬命名的,形如的素數(shù)(如:)為費馬索數(shù),在不超過30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()A. B. C. D.11.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.412.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設(shè)點位于第一象限),過點,分別作拋物線的準(zhǔn)線的垂線,垂足分別為點,,拋物線的準(zhǔn)線交軸于點,若,則直線的斜率為A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.14.某高校開展安全教育活動,安排6名老師到4個班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.15.函數(shù)的定義域是.16.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標(biāo)準(zhǔn)方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準(zhǔn)線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.18.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;②為了鼓勵市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達(dá)人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應(yīng)的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)過點作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.21.(12分)已知函數(shù)(),且只有一個零點.(1)求實數(shù)a的值;(2)若,且,證明:.22.(10分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線的極坐標(biāo)方程為,射線的極坐標(biāo)方程為.(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【點睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.2、D【解析】
直接根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學(xué)生的理解能力和應(yīng)用能力.3、B【解析】
求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.4、A【解析】
直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運算求解能力.5、A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.6、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.7、D【解析】
由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點和可行域內(nèi)的點的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點和可行域內(nèi)的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點睛】本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.9、C【解析】試題分析:,.故C正確.考點:復(fù)合函數(shù)求值.10、B【解析】
基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個不同費馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.11、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。12、C【解析】
根據(jù)拋物線定義,可得,,又,所以,所以,設(shè),則,則,所以,所以直線的斜率.故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【詳解】設(shè)抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.14、156【解析】
先考慮每班安排的老師人數(shù),然后計算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進(jìn)行分析.15、【解析】解:因為,故定義域為16、【解析】
設(shè)雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設(shè)雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設(shè)雙曲線方程為是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)根據(jù)拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設(shè)直線,的方程分別為和且,,,可得,,,的坐標(biāo),進(jìn)而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設(shè),,則,根據(jù)直線的斜率不為0,設(shè)出直線的方程為,聯(lián)立直線和拋物線的方程,結(jié)合韋達(dá)定理,分別求出,,化簡,即可得證.【詳解】(1)拋物線C的焦點坐標(biāo)為,且該點在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點F在線段上,可設(shè)直線,的方程分別為和且,,,則,,,.∴直線的方程為,即.又點在線段上,∴.∵P是的中點,∴∴,.由于,不重合,所以法二:設(shè),,則當(dāng)直線的斜率為0時,不符合題意,故可設(shè)直線的方程為聯(lián)立直線和拋物線的方程,得又,為該方程兩根,所以,,,.,由于,不重合,所以【點睛】本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線的定義,考查直線與拋物線的位置關(guān)系,屬于中檔題.18、(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】
(1)根據(jù)列聯(lián)表和獨立性檢驗的公式計算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨立重復(fù)事件的概率公式即可求得結(jié)果.【詳解】(1)由題意可知,有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點睛】本題主要考查獨立性檢驗及獨立重復(fù)事件的概率求法,難度一般.19、(1)不能;(2)①;②分布列見解析,.【解析】
(1)根據(jù)題目所給的數(shù)據(jù)可求2×2列聯(lián)表即可;計算K的觀測值K2,對照題目中的表格,得出統(tǒng)計結(jié)論.(2)由相互獨立事件的概率可得男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率:P=1﹣()3﹣()3,解出X的分布列及數(shù)學(xué)期望E(X)即可;【詳解】(1)由圖中表格可得列聯(lián)表如下:非“環(huán)保關(guān)注者”是“環(huán)保關(guān)注者”合計男104555女153045合計2575100將列聯(lián)表中的數(shù)據(jù)代入公式計算得K”的觀測值,所以在犯錯誤的概率不超過0.05的前提下,不能認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān).(2)視頻率為概率,用戶為男“環(huán)保達(dá)人”的概率為.為女“環(huán)保達(dá)人”的概率為,①抽取的3名用戶中既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點睛】本題考查了獨立性檢驗的應(yīng)用問題,考查了概率分布列和期望,計算能力的應(yīng)用問題,是中檔題目.20、(1);(2).【解析】
(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《保護(hù)好自己的眼睛》課件
- 【培訓(xùn)課件】金融市場與交易
- 《項目管理小案例》課件
- 房地產(chǎn)自查報告的范文
- 2025年張掖貨運從業(yè)資格證在哪里練題
- 2025年湖南貨運從業(yè)資格考試模擬考試題目及答案
- 2025年寧夏道路運輸從業(yè)人員資格考試內(nèi)容有哪些
- 《設(shè)計場地調(diào)研分析》課件
- 2025年郴州貨車資格證考試題
- 2025年云南貨車從業(yè)資格證題目庫
- 第1課 多姿與多彩(生活色彩)課件-2023-2024學(xué)年高中美術(shù)人教版(2019)選擇性必修1《繪畫》
- 城管協(xié)管員筆試考題試題(含答案)大全五篇
- 汽車制造中的庫存管理與優(yōu)化
- TNAHIEM 101-2023 急診科建設(shè)與設(shè)備配置標(biāo)準(zhǔn)
- 古代文化的人文精神與美學(xué)
- 隸書詳解教學(xué)課件
- 項目延期原因分析與應(yīng)對措施總結(jié)
- 貨物生產(chǎn)、采購、運輸方案(技術(shù)方案)
- 結(jié)構(gòu)化設(shè)計情境化教學(xué)-統(tǒng)編小學(xué)語文“習(xí)作單元”的教材解讀及教學(xué)建議 論文
- 路虎發(fā)現(xiàn)4說明書
- 腎破裂保守治療護(hù)理查房
評論
0/150
提交評論