貴州省銅仁市德江縣第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第1頁
貴州省銅仁市德江縣第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第2頁
貴州省銅仁市德江縣第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第3頁
貴州省銅仁市德江縣第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第4頁
貴州省銅仁市德江縣第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

貴州省銅仁市德江縣第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(文科)已知點為曲線上的動點,為圓上的動點,則的最小值是A.3 B.5C. D.2.設(shè)等差數(shù)列的前n項和為.若,則()A.19 B.21C.23 D.383.設(shè)是虛數(shù)單位,則復(fù)數(shù)對應(yīng)的點在平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知函數(shù),則的值為()A. B.C.0 D.15.在空間中,“直線與沒有公共點”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件6.若直線與平行,則實數(shù)m等于()A.1 B.C.4 D.07.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.8.若1,m,9三個數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或29.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.210.在長方體中,,,分別是棱,的中點,則異面直線,的夾角為()A. B.C. D.11.是雙曲線:上一點,已知,則的值()A. B.C.或 D.12.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點和,圓,當圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________14.已知蜥蜴的體溫與陽光照射的關(guān)系可近似為,其中為蜥蜴的體溫(單位:℃)為太陽落山后的時間(單位:).當________時,蜥蜴體溫的瞬時變化率為15.過橢圓的右焦點作兩條相互垂直的直線m,n,直線m與橢圓交于A,B兩點,直線n與橢圓交于C,D兩點,若.則下列方程①;②;③;④.其中可以作為直線AB的方程的是______(寫出所有正確答案的序號)16.若圓被直線平分,則值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點,,,求二面角的余弦值18.(12分)已知雙曲線的左、右焦點分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.19.(12分)已知橢圓C的中心在原點,焦點在x軸上,焦距為2,離心率為(1)求橢圓C的方程;(2)設(shè)直線l經(jīng)過點M(0,1),且與橢圓C交于A,B兩點,若,求直線l的方程20.(12分)已知數(shù)列滿足,記數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前100項和21.(12分)已知點,,設(shè)動點P滿足直線PA與PB的斜率之積為,記動點P的軌跡為曲線E(1)求曲線E的方程;(2)若動直線l經(jīng)過點,且與曲線E交于C,D(不同于A,B)兩點,問:直線AC與BD的斜率之比是否為定值?若為定值,求出該定值;若不為定值,請說明理由22.(10分)為弘揚中華優(yōu)秀傳統(tǒng)文化,鼓勵全民閱讀經(jīng)典書籍,某市舉行閱讀月活動,現(xiàn)統(tǒng)計某街道約10000人在該活動月每人每日平均閱讀時間(分鐘)的頻率分布直方圖如圖:(1)求x的值;(2)從該街道任選1人,則估計這個人的每日平均閱讀時間超過60分鐘的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】數(shù)形結(jié)合分析可得,當時能夠取得的最小值,根據(jù)點到圓心的距離減去半徑求解即可.【詳解】由對勾函數(shù)的性質(zhì),可知,當且僅當時取等號,結(jié)合圖象可知當A點運動到時能使點到圓心的距離最小,最小為4,從而的最小值為.故選:A【點睛】本題考查兩動點間距離的最值問題,考查轉(zhuǎn)化思想與數(shù)形結(jié)合思想,屬于中檔題.2、A【解析】由已知及等差數(shù)列的通項公式得到公差d,再利用前n項和公式計算即可.【詳解】設(shè)等差數(shù)列的公差為d,由已知,得,解得,所以.故選:A3、A【解析】計算出復(fù)數(shù)即可得出結(jié)果.【詳解】由于,對應(yīng)的點的坐標為,在第一象限,故選:A.4、B【解析】對函數(shù)求導(dǎo),然后將代入導(dǎo)數(shù)中可得結(jié)果.【詳解】,則,則,故選:B5、A【解析】由于在空間中,若直線與沒有公共點,則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【詳解】在空間中,若直線與沒有公共點,則直線與平行或異面.故“直線與沒有公共點”是“直線與異面”的必要不充分條件.故選:A.6、B【解析】兩直線平行的充要條件【詳解】由于,則,.故選:B7、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A8、D【解析】運用等比數(shù)列的性質(zhì)可得,再討論,,求出曲線的,,由離心率公式計算即可得到【詳解】三個數(shù)1,,9成等比數(shù)列,則,解得,,當時,曲線為橢圓,則;當時,曲線為為雙曲線,則離心率故選:9、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因為A=B,若,解得,當時,不滿足互異性,舍去,當時,A={1,-1,b},B={1,-1,-b},因為A=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點睛】本題考查兩集合相等的概念,在集合相等問題中由一個條件求出參數(shù)后需進行代入檢驗,檢驗是否滿足互異性、題設(shè)條件等,屬基礎(chǔ)題.10、C【解析】設(shè)出長度,建立空間直角坐標系,根據(jù)向量求異面直線所成角即可.【詳解】如下圖所示,以,,所在直線方向,,軸,建立空間直角坐標系,設(shè),,,,,,所以,,設(shè)異面直線,的夾角為,所以,所以,即異面直線,的夾角為.故選:C.11、B【解析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點到焦點的距離的取值范圍,即可求解.【詳解】雙曲線方程為:,是雙曲線:上一點,,,或,又,.故選:B12、D【解析】由向量線性運算得,利用數(shù)量積的定義和運算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當點和都在圓的內(nèi)部時,結(jié)合點與圓的位置關(guān)系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【詳解】當點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:14、5【解析】求得導(dǎo)函數(shù),令,計算即可得出結(jié)果.【詳解】,,令,得:.解得:.時刻min時,蜥蜴的體溫的瞬時變化率為故答案為:5.15、①②【解析】①②結(jié)合橢圓方程得到與橢圓參數(shù)的關(guān)系,即可判斷;③④聯(lián)立直線與橢圓方程,利用弦長公式求,即可判斷.【詳解】由題設(shè),且右焦點為,①時直線,故,則符合題設(shè);②時,同①知:符合題設(shè);③時直線,聯(lián)立直線AB與橢圓方程并整理得:,則,同理可得,則,不合題設(shè);④時,同③分析知:,不合題設(shè);故答案為:①②.16、;【解析】求出圓的圓心坐標,代入直線方程求解即可【詳解】解:的圓心圓被直線平分,可知直線經(jīng)過圓的圓心,可得解得;故答案為:1【點睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結(jié)合面面垂直的性質(zhì)可得平面,進一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點,連接,以為坐標原點,建立如圖所示的空間直角坐標系,由題得,解得.進而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設(shè)BC中點為,連接,,又面面,且面面,所以面.以為坐標原點,的方向為軸正方向,為單位長,建立如圖所示的空間直角坐標系.由(1)知PB⊥平面PCD,故PB⊥,設(shè),可得所以由題得,解得.所以設(shè)是平面的法向量,則,即,可取.設(shè)是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點的坐標,再用兩點之間的距離公式即可求得;(2)根據(jù)(1)中所求,利用兩點之間的距離公式,即可求得三角形周長.【小問1詳解】設(shè)點的坐標分別為,由題意知雙曲線的左、右焦點坐標分別為、,直線的方程,與聯(lián)立得,解得,代入的方程為分別解得.所以.【小問2詳解】由(1)知,,,所以△的周長為.19、(1);(2)或【解析】(1)根據(jù)橢圓的焦距為2,離心率為,求出,,即可求橢圓的方程;(2)設(shè)直線方程為,代入橢圓方程,由得,利用韋達定理,化簡可得,求出,即可求直線的方程.試題解析:(1)設(shè)橢圓方程為,因為,所以,所求橢圓方程為.(2)由題得直線l的斜率存在,設(shè)直線l方程為y=kx+1,則由得,且.設(shè),則由得,又,所以消去得,解得,,所以直線的方程為,即或.20、(1)(2)【解析】(1)由題意得出,然后與原式結(jié)合,兩式相減并化簡求出,最后根據(jù)等差數(shù)列的定義求得答案;(2)結(jié)合(1),分別討論,和三種情況,分別求出,進而求出.【小問1詳解】因為,所以,兩式相減得,所以又,所以數(shù)列是首項為,公差為2的等差數(shù)列,所以.【小問2詳解】由得,當時,,當時,,當時,,所以.21、(1);(2)直線AC和BD的斜率之比為定值【解析】(1)設(shè),依據(jù)兩點的斜率公式可求得曲線E的方程(2)設(shè)直線l:,,,聯(lián)立方程得,得出根與系數(shù)的關(guān)系,表示直線AC的斜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論