浙江省紹興市諸暨市浣江教育集團重點中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第1頁
浙江省紹興市諸暨市浣江教育集團重點中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第2頁
浙江省紹興市諸暨市浣江教育集團重點中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第3頁
浙江省紹興市諸暨市浣江教育集團重點中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第4頁
浙江省紹興市諸暨市浣江教育集團重點中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省紹興市諸暨市浣江教育集團重點中學(xué)2024屆中考數(shù)學(xué)考前最后一卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m2.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°3.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<44.下列四個實數(shù)中是無理數(shù)的是()A.2.5B.1035.如圖是由5個相同的小正方體組成的立體圖形,這個立體圖形的俯視圖是()A. B. C. D.6.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x7.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.8.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(

)A. B. C. D.9.如圖,線段AB兩個端點的坐標分別為A(2,2)、B(3,1),以原點O為位似中心,在第一象限內(nèi)將線段AB擴大為原來的2倍后得到線段CD,則端點C的坐標分別為()A.(4,4) B.(3,3) C.(3,1) D.(4,1)10.的絕對值是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,經(jīng)過點A的雙曲線y=(x>0)同時經(jīng)過點B,且點A在點B的左側(cè),點A的橫坐標為1,∠AOB=∠OBA=45°,則k的值為_______.12.對于實數(shù),我們用符號表示兩數(shù)中較小的數(shù),如.因此,________;若,則________.13.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則ba=_____.14.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內(nèi),使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點A作量角器圓弧所在圓的切線,切點為E,則點E在量角器上所對應(yīng)的度數(shù)是____.15.在一個不透明的口袋中裝有4個紅球和若干個白球,它們除顏色外其他完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有_____個.16.如圖,某水庫大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長度等于________米(結(jié)果保留根號)三、解答題(共8題,共72分)17.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出B1點的坐標;(2)畫出△ABC繞原點O旋轉(zhuǎn)180°后得到的圖形△A2B2C2,并寫出B2點的坐標;(3)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.18.(8分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關(guān)于時間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當(dāng)20≤t≤30時,求乙離景點A的路程s與t的函數(shù)表達式;乙出發(fā)后多長時間與甲在途中相遇?若當(dāng)甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?19.(8分)如圖,在中,以為直徑的⊙交于點,過點作于點,且.()判斷與⊙的位置關(guān)系并說明理由;()若,,求⊙的半徑.20.(8分)“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調(diào),已知購買1臺A型號的空調(diào)比1臺B型號的空調(diào)少200元,購買2臺A型號的空調(diào)與3臺B型號的空調(diào)共需11200元,求A、B兩種型號的空調(diào)的購買價各是多少元?21.(8分)某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如下表:類型價格進價(元/盞)售價(元/盞)A型3045B型5070(1)若商場預(yù)計進貨款為3500元,則這兩種臺燈各進多少盞.(2)若設(shè)商場購進A型臺燈m盞,銷售完這批臺燈所獲利潤為P,寫出P與m之間的函數(shù)關(guān)系式.(3)若商場規(guī)定B型燈的進貨數(shù)量不超過A型燈數(shù)量的4倍,那么A型和B型臺燈各進多少盞售完之后獲得利潤最多?此時利潤是多少元.22.(10分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.2014年這種禮盒的進價是多少元/盒?若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?23.(12分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)24.如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD=1.設(shè)點A的坐標為(4,4)則點C的坐標為;若點D的坐標為(4,n).①求反比例函數(shù)y=的表達式;②求經(jīng)過C,D兩點的直線所對應(yīng)的函數(shù)解析式;在(2)的條件下,設(shè)點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:結(jié)合2個圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.2、D【解析】

先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.3、A【解析】

根據(jù)一元一次不等式的解法,移項,合并同類項,系數(shù)化為1即可得解.【詳解】移項得:?x>3?1,合并同類項得:?x>2,系數(shù)化為1得:x<-4.故選A.【點睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握一元一次不等式的解法.4、C【解析】本題主要考查了無理數(shù)的定義.根據(jù)無理數(shù)的定義:無限不循環(huán)小數(shù)是無理數(shù)即可求解.解:A、2.5是有理數(shù),故選項錯誤;B、103C、π是無理數(shù),故選項正確;D、1.414是有理數(shù),故選項錯誤.故選C.5、C【解析】

從上面看共有2行,上面一行有3個正方形,第二行中間有一個正方形,故選C.6、D【解析】

本題主要考查二次函數(shù)的解析式【詳解】解:根據(jù)二次函數(shù)的解析式形式可得,設(shè)頂點坐標為(h,k),則二次函數(shù)的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數(shù)的頂點式,根據(jù)頂點的平移可得到二次函數(shù)平移后的解析式.7、A【解析】

解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【點睛】本題考查1.相似三角形的判定與性質(zhì);2.平行四邊形的性質(zhì),綜合性較強,掌握相關(guān)性質(zhì)定理正確推理論證是解題關(guān)鍵.8、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.9、A【解析】

利用位似圖形的性質(zhì)結(jié)合對應(yīng)點坐標與位似比的關(guān)系得出C點坐標.【詳解】∵以原點O為位似中心,在第一象限內(nèi)將線段AB擴大為原來的2倍后得到線段CD,∴A點與C點是對應(yīng)點,∵C點的對應(yīng)點A的坐標為(2,2),位似比為1:2,∴點C的坐標為:(4,4)故選A.【點睛】本題考查了位似變換,正確把握位似比與對應(yīng)點坐標的關(guān)系是解題關(guān)鍵.10、C【解析】

根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.【點睛】錯因分析

容易題,失分原因:未掌握絕對值的概念.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

分析:過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質(zhì)得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)?(k﹣1)=k,解方程即可.詳解:如圖所示,過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵雙曲線y=(x>0)經(jīng)過點B,∴(1+k)?(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(負值已舍去),故答案為.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,坐標與圖形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì)等知識.解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.【詳解】請在此輸入詳解!12、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當(dāng)x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當(dāng)x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,13、1【解析】

根據(jù)已知a<<b,結(jié)合a、b是兩個連續(xù)的整數(shù)可得a、b的值,即可求解.【詳解】解:∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點睛】此題考查的是如何根據(jù)無理數(shù)的范圍確定兩個有理數(shù)的值,題中根據(jù)的取值范圍,可以很容易得到其相鄰兩個整數(shù),再結(jié)合已知條件即可確定a、b的值,14、60.【解析】

首先設(shè)半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數(shù),則可求得答案.【詳解】設(shè)半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點E所對應(yīng)的量角器上的刻度數(shù)是60°,故答案為:60.【點睛】本題考查了切線的性質(zhì)、全等三角形的判定與性質(zhì)以及垂直平分線的性質(zhì),解題的關(guān)鍵是掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.15、1.【解析】

由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】設(shè)白球個數(shù)為:x個,∵摸到紅色球的頻率穩(wěn)定在25%左右,∴口袋中得到紅色球的概率為25%,∴44+x=1解得:x=1,故白球的個數(shù)為1個.故答案為:1.【點睛】此題主要考查了利用頻率估計概率,根據(jù)大量反復(fù)試驗下頻率穩(wěn)定值即概率得出是解題關(guān)鍵.16、【解析】

過梯形上底的兩個頂點向下底引垂線、,得到兩個直角三角形和一個矩形,分別解、求得線段、的長,然后與相加即可求得的長.【詳解】如圖,作,,垂足分別為點E,F(xiàn),則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長度等于米.故答案為.【點睛】此題考查了解直角三角形的應(yīng)用﹣坡度坡角問題,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形和矩形,注意理解坡度與坡角的定義.三、解答題(共8題,共72分)17、(1)畫圖見解析;(2)畫圖見解析;(3)畫圖見解析.【解析】

試題分析:(1)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C平移后的對應(yīng)點A1、B1、C1的位置,然后順次連接即可;(2)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于原點的對稱點A2、B2、C2的位置,然后順次連接即可;(3)、找出點A關(guān)于x軸的對稱點A′,連接A′B與x軸相交于一點,根據(jù)軸對稱確定最短路線問題,交點即為所求的點P的位置,然后連接AP、BP并根據(jù)圖象寫出點P的坐標即可.試題解析:(1)、△A1B1C1如圖所示;B1點的坐標(-4,2)(2)、△A2B2C2如圖所示;B2點的坐標:(-4,-2)(3)、△PAB如圖所示,P(2,0).考點:(1)、作圖-旋轉(zhuǎn)變換;(2)、軸對稱-最短路線問題;(3)、作圖-平移變換.18、(1)60;(2)s=10t-6000;(3)乙出發(fā)5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解析】

(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數(shù)法求一次函數(shù)解析式即可;(3)分兩種情況討論即可;(4)設(shè)乙從B步行到C的速度是x米/分鐘,根據(jù)當(dāng)甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【詳解】(1)甲的速度為60米/分鐘.(2)當(dāng)20≤t≤1時,設(shè)s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當(dāng)20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當(dāng)1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發(fā)5分鐘和1分鐘時與甲在途中相遇.(4)設(shè)乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、行程問題等知識,解題的關(guān)鍵是理解題意,讀懂圖像信息,學(xué)會構(gòu)建一次函數(shù)解決實際問題,屬于中考??碱}型.19、(1)DE與⊙O相切,詳見解析;(2)5【解析】

(1)根據(jù)直徑所對的圓心角是直角,再結(jié)合所給條件∠BDE=∠A,可以推導(dǎo)出∠ODE=90°,說明相切的位置關(guān)系。(2)根據(jù)直徑所對的圓心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推導(dǎo)出∠DAB=∠C,可判定△ABC是等腰三角形,再根據(jù)BD⊥AC可知D是AC的中點,從而得出AD的長度,再在Rt△ADB中計算出直徑AB的長,從而算出半徑?!驹斀狻浚?)連接OD,在⊙O中,因為AB是直徑,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因為∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD過圓心,D是圓上一點,故DE是⊙O切線上的一段,因此位置關(guān)系是直線DE與⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,則∠BDE+∠ABD=90°,因為DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,則∠ABD=∠DBE,又因為BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底邊BC上的高,則D是AC的中點,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB為直徑,所以⊙O的半徑是5.【點睛】本題主要考查圓中的計算問題和與圓有關(guān)的位置關(guān)系,解本題的要點在于求出AD的長,從而求出AB的長.20、A、B兩種型號的空調(diào)購買價分別為2120元、2320元【解析】試題分析:根據(jù)題意,設(shè)出A、B兩種型號的空調(diào)購買價分別為x元、y元,然后根據(jù)“已知購買1臺A型號的空調(diào)比1臺B型號的空調(diào)少200元,購買2臺A型號的空調(diào)與3臺B型號的空調(diào)共需11200元”,列出方程求解即可.試題解析:設(shè)A、B兩種型號的空調(diào)購買價分別為x元、y元,依題意得:解得:答:A、B兩種型號的空調(diào)購買價分別為2120元、2320元21、(1)應(yīng)購進A型臺燈75盞,B型臺燈25盞;(2)P=﹣5m+2000;(3)商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【解析】

(1)設(shè)商場應(yīng)購進A型臺燈x盞,表示出B型臺燈為(100-x)盞,然后根據(jù)進貨款=A型臺燈的進貨款+B型臺燈的進貨款列出方程求解即可;(2)根據(jù)題意列出方程即可;

(3)設(shè)商場銷售完這批臺燈可獲利y元,根據(jù)獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出獲利的最大值.【詳解】解:(1)設(shè)商場應(yīng)購進A型臺燈x盞,則B型臺燈為(100﹣x)盞,根據(jù)題意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:應(yīng)購進A型臺燈75盞,B型臺燈25盞;(2)設(shè)商場銷售完這批臺燈可獲利P元,則P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P隨m的增大而減小,∴m=20時,P取得最大值,為﹣5×20+2000=1900(元)答:商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【點睛】本題考查了一次函數(shù)與一元一次方程的應(yīng)用,解題的關(guān)鍵是熟練的掌握一次函數(shù)與一元一次方程的應(yīng)用.22、(1)35元/盒;(2)20%.【解析】

試題分析:(1)設(shè)2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據(jù)2014年花3500元與2016年花2400元購進的禮盒數(shù)量相同,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)年增長率為m,根據(jù)數(shù)量=總價÷單價求出2014年的購進數(shù)量,再根據(jù)2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關(guān)于m的一元二次方程,解之即可得出結(jié)論.試題解析:(1)設(shè)2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據(jù)題意得:,解得:x=35,經(jīng)檢驗,x=35是原方程的解.答:2014年這種禮盒的進價是35元/盒.(2)設(shè)年增長率為m,2014年的銷售數(shù)量為3500÷35=100(盒).根據(jù)題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論