版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省北師大貴陽附中2025屆高一上數(shù)學期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知指數(shù)函數(shù)是減函數(shù),若,,,則m,n,p的大小關系是()A. B.C. D.2.函數(shù)的最小正周期是()A. B.C. D.33.已知角的頂點與平面直角坐標系的原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點,若,則的值為()A. B.C. D.4.設函數(shù),則下列說法錯誤的是()A.當時,的值域為B.的單調遞減區(qū)間為C.當時,函數(shù)有個零點D.當時,關于的方程有個實數(shù)解5.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},則()A.
4,6
B.C
D.6.已知函數(shù)的部分圖像如圖所示,則正數(shù)A值為()A. B.C. D.7.如圖,在下列四個正方體中,、為正方體兩個頂點,、、為所在棱的中點,則在這四個正方體中,直線與平面不平行的是()A. B.C. D.8.已知集合,集合與的關系如圖所示,則集合可能是()A. B.C. D.9.奇函數(shù)在內單調遞減且,則不等式的解集為()A. B.C. D.10.已知是定義域為的偶函數(shù),當時,,則的解集為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的值為______12.函數(shù)恒過定點________.13.若圓錐的側面展開圖是圓心角為的扇形,則該圓錐的側面積與底面積之比為___________.14.制造一種零件,甲機床的正品率為,乙機床的正品率為.從它們制造的產品中各任抽1件,則兩件都是正品的概率是__________15.已知函數(shù),的最大值為3,最小值為2,則實數(shù)的取值范圍是________.16.定義域為R,值域為-∞,1三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合.(1)若是空集,求取值范圍;(2)若中只有一個元素,求的值,并把這個元素寫出來.18.已知,,,為第二象限角,求和的值.19.已知定義域為的函數(shù)是奇函數(shù)(Ⅰ)求值;(Ⅱ)判斷并證明該函數(shù)在定義域上的單調性;(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;(Ⅳ)設關于的函數(shù)有零點,求實數(shù)的取值范圍.20.已知,(1)求的值;(2)求的值21.已知函數(shù)的圖象過點與點.(1)求,的值;(2)若,且,滿足條件的的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由已知可知,再利用指對冪函數(shù)的性質,比較m,n,p與0,1的大小,即可得解.【詳解】由指數(shù)函數(shù)是減函數(shù),可知,結合冪函數(shù)的性質可知,即結合指數(shù)函數(shù)的性質可知,即結合對數(shù)函數(shù)的性質可知,即,故選:B.【點睛】方法點睛:本題考查比較大小,比較指數(shù)式和對數(shù)式的大小,可以利用函數(shù)的單調性,引入中間量;有時也可用數(shù)形結合的方法,解題時要根據(jù)實際情況來構造相應的函數(shù),利用函數(shù)單調性進行比較,如果指數(shù)相同,而底數(shù)不同則構造冪函數(shù),若底數(shù)相同而指數(shù)不同則構造指數(shù)函數(shù),若引入中間量,一般選0或1.2、A【解析】根據(jù)解析式,由正切函數(shù)的性質求最小正周期即可.【詳解】由解析式及正切函數(shù)的性質,最小正周期.故選:A.3、C【解析】根據(jù)終邊經(jīng)過點,且,利用三角函數(shù)的定義求解.【詳解】因為角終邊經(jīng)過點,且,所以,解得,故選:C4、C【解析】利用二次函數(shù)和指數(shù)函數(shù)的值域可判斷A選項;利用二次函數(shù)和指數(shù)函數(shù)的單調性可判斷B選項;利用函數(shù)的零點個數(shù)求出的取值范圍,可判斷C選項;解方程可判斷D選項.【詳解】選項A:當時,當時,,當時,,當時,,綜上,函數(shù)的值域為,故A正確;選項B:當時,的單調遞減區(qū)間為,當時,函數(shù)為單調遞增函數(shù),無單調減區(qū)間,所以函數(shù)的單調遞減為,故B正確;選項C:當時,令,解得或(舍去),當時,要使有解,即在上有解,只需求出的值域即可,當時,,且函數(shù)在上單調遞減,所以此時的范圍為,故C錯誤;選項D:當時,,即,即,解得或,當,時,,則,即,解得,所以當時,關于的方程有個實數(shù)解,故D正確.故選:C.5、B【解析】利用交、并、補集運算,對答案項逐一驗證即可【詳解】,A錯誤={2,3,4,5,6,7}=,B正確
{3,4,5,7},C錯誤,,D錯誤故選:B【點睛】本題考查集合的混合運算,較簡單6、B【解析】根據(jù)圖象可得函數(shù)的周期,從而可求,再根據(jù)對稱軸可求,結合圖象過可求.【詳解】由圖象可得,故,而時,函數(shù)取最小值,故,故,而,故,因為圖象過,故,故,故選:B.7、D【解析】利用線面平行判定定理可判斷A、B、C選項的正誤;利用線面平行的性質定理可判斷D選項的正誤.【詳解】對于A選項,如下圖所示,連接,在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于B選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于C選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、中點,則,,平面,平面,平面;對于D選項,如下圖所示,連接交于點,連接,連接交于點,若平面,平面,平面平面,則,則,由于四邊形為正方形,對角線交于點,則為的中點,、分別為、的中點,則,且,則,,則,又,則,所以,與平面不平行;故選:D.【點睛】判斷或證明線面平行的常用方法:(1)利用線面平行的定義,一般用反證法;(2)利用線面平行的判定定理(,,),其關鍵是在平面內找(或作)一條直線與已知直線平行,證明時注意用符號語言的敘述;(3)利用面面平行的性質定理(,).8、D【解析】由圖可得,由選項即可判斷.【詳解】解:由圖可知:,,由選項可知:,故選:D.9、A【解析】由已知可作出函數(shù)的大致圖象,結合圖象可得到答案.【詳解】因為函數(shù)在上單調遞減,,所以當時,,當,,又因為是奇函數(shù),圖象關于原點對稱,所以在上單調遞減,,所以當時,,當時,,大致圖象如下,由得或,解得,或,或,故選:A.【點睛】本題考查了抽象函數(shù)的單調性和奇偶性,解題的關鍵點是由題意分析出的大致圖象,考查了學生分析問題、解決問題的能力.10、C【解析】首先畫出函數(shù)的圖象,并當時,,由圖象求不等式的解集.【詳解】由題意畫出函數(shù)的圖象,當時,,解得,是偶函數(shù),時,,由圖象可知或,解得:或,所以不等式的解集是.故選:C【點睛】本題考查函數(shù)圖象的應用,利用函數(shù)圖象解不等式,意在考查數(shù)形結合分析問題和解決問題的能力,屬于幾次題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】直接利用對數(shù)的運算法則和指數(shù)冪的運算法則求解即可【詳解】12、【解析】根據(jù)函數(shù)圖象平移法則和對數(shù)函數(shù)的性質求解即可【詳解】將的圖象現(xiàn)左平移1個單位,再向下平移2個單位,可得到的圖象,因為的圖象恒過定點,所以恒過定點,故答案為:13、【解析】設圓錐的底面半徑為r,母線長為l,根據(jù)圓錐的側面展開圖是圓心角為的扇形,有,即,然后分別求得側面積和底面積即可.【詳解】設圓錐的底面半徑為r,母線長為l,由題意得:,即,所以其側面積是,底面積是,所以該圓錐的側面積與底面積之比為故答案為:14、【解析】由獨立事件的乘法公式求解即可.【詳解】由獨立事件的乘法公式可知,兩件都是正品的概率是.故答案為:15、【解析】畫出函數(shù)的圖像,對稱軸為,函數(shù)在對稱軸的位置取得最小值2,令,可求得,或,進而得到參數(shù)范圍.【詳解】函數(shù)的圖象是開口朝上,且以直線為對稱的拋物線,當時,函數(shù)取最小值2,令,則,或,若函數(shù)在上的最大值為3,最小值為2,則,故答案為:.16、fx【解析】利用基本初等函數(shù)的性質可知滿足要求的函數(shù)可以是fx=1-a【詳解】因為fx=2x的定義域為所以fx=-2x的定義域為則fx=1-2x的定義域為所以定義域為R,值域為-∞,1的一個減函數(shù)是故答案為:fx三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)時,;時,【解析】(1)有由是空集,可得方程無解,故,由此解得的取值范圍;(2)若中只有一個元素,則或,求出的值,再把的值代入方程,解得的值,即為所求.試題解析:(1)要使為空集,方程應無實根,應滿足解得.(2)當時,方程為一次方程,有一解;當,方程為一元二次方程,使集合只有一個元素的條件是,解得,.∴時,,元素為:;時,.元素為:18、,【解析】由已知可求得,,根據(jù)和的余弦公式可求得,再利用二倍角公式即可求出.詳解】,,,,為第二象限角,則,解得,,,.19、(Ⅰ);(Ⅱ)答案見解析;(Ⅲ)(Ⅳ).【解析】(1)根據(jù)奇函數(shù)性質得,解得值;(2)根據(jù)單調性定義,作差通分,根據(jù)指數(shù)函數(shù)單調性確定因子符號,最后根據(jù)差的符號確定單調性(3)根據(jù)奇偶性以及單調性將不等式化為一元二次不等式恒成立問題,利用判別式求實數(shù)的取值范圍;(4)根據(jù)奇偶性以及單調性將方程轉化為一元二次方程有解問題,根據(jù)二次函數(shù)圖像與性質求值域,即得實數(shù)的取值范圍.試題解析:(Ⅰ)由題設,需,∴,∴,經(jīng)驗證,為奇函數(shù),∴.(Ⅱ)減函數(shù)證明:任取,,且,則,∵∴∴,;∴,即∴該函數(shù)在定義域上減函數(shù).(Ⅲ)由得,∵是奇函數(shù),∴,由(Ⅱ)知,是減函數(shù)∴原問題轉化為,即對任意恒成立,∴,得即為所求.(Ⅳ)原函數(shù)零點的問題等價于方程由(Ⅱ)知,,即方程有解∵,∴當時函數(shù)存在零點.點睛:利用函數(shù)性質解不等式:首先根據(jù)函數(shù)的性質把不等式轉化為的形式,然后根據(jù)函數(shù)的單調性去掉“”,轉化為具體的不等式(組),此時要注意與的取值應在外層函數(shù)的定義域內.20、(1);(2).【解析】(1)先根據(jù)的值和二者的平方關系聯(lián)立求得的值,再把平方即可求出;(2)結合(1)求,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房車課程設計
- 文物保護課程設計
- 幼兒園詩歌主題課程設計
- 汽修廠培訓課件
- 影視化妝課程設計思路
- 早教館少兒會被故事《小年獸》
- 托育親子早教課程設計
- 強化中小學科學教育:新時代教育改革的策略與路徑
- 加速制造業(yè)企業(yè)運維服務模式創(chuàng)新實施方案
- 廣西xx區(qū)域性養(yǎng)老服務中心項目可行性研究報告
- 醫(yī)學教程 《疼痛與護理》課件
- 2023-2024學年天津市部分區(qū)八年級(上)期末物理試卷
- 律師事務所薪酬分配制度
- 2024山東高速路橋集團股份限公司社會招聘455人高頻難、易錯點500題模擬試題附帶答案詳解
- 第10課《往事依依》公開課一等獎創(chuàng)新教學設計
- 2024-2030年中國呼叫中心外包行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- Unit 4 My Favourite Subject Section B(教學教學設計) 2024-2025學年人教版(2024)七年級英語上冊
- 汽車之家:2024年增換購用戶需求洞察1727674734
- 陜西省師大附中2025屆高三下學期聯(lián)考物理試題含解析
- 讀后續(xù)寫15種高分句式
- 2024電力巡檢無人機自動機場技術標準
評論
0/150
提交評論