2025屆山東省淄博市第七中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2025屆山東省淄博市第七中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2025屆山東省淄博市第七中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2025屆山東省淄博市第七中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2025屆山東省淄博市第七中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山東省淄博市第七中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.設(shè)集合A={-2,1},B={-1,2},定義集合AB={x|x=x1x2,x1∈A,x2∈B},則AB中所有元素之積A.-8B.-16C.8D.163.若sin(),α是第三象限角,則sin()=()A. B.C. D.4.在中,滿足,則這個三角形是()A.正三角形 B.等腰三角形C.銳角三角形 D.鈍角三角形5.在如圖所示的多面體ABCDB1C1D1中,四邊形ABCD、四邊形BCC1B1、四邊形CDC1C1都是邊長為6的正方形,則此多面體ABCDB1C1D1的體積()A.72 B.144C.180 D.2166.已知菱形的邊長為2,,點分別在邊上,,.若,則等于()A. B.C. D.7.已知函數(shù),若不等式對任意的均成立,則的取值不可能是()A. B.C. D.8.設(shè)函數(shù),若關(guān)于的方程有四個不同的解,,,,且,則的取值范圍是()A. B.C. D.9.函數(shù)()的最大值為()A. B.1C.3 D.410.過點A(3,4)且與直線l:x﹣2y﹣1=0垂直的直線的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=0二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若函數(shù)恰有三個不同的零點,則實數(shù)k的取值范圍是_____________12.在內(nèi),使成立的x的取值范圍是____________13.已知函數(shù),,對,用表示,中的較大者,記為,則的最小值為______.14.若函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,則實數(shù)的取值范圍是_________15.設(shè)函數(shù).則函數(shù)的值域為___________;若方程在區(qū)間上的四個根分別為,,,,則___________.16.若、是方程的兩個根,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)當(dāng)時,解關(guān)于的方程;(2)當(dāng)時,函數(shù)在有零點,求實數(shù)的取值范圍.18.如圖,彈簧掛著的小球做上下振動,它在(單位:)時相對于平衡位置(靜止時的位置)的高度(單位:)由關(guān)系式確定,其中,,.在一次振動中,小球從最高點運動至最低點所用時間為.且最高點與最低點間的距離為(1)求小球相對平衡位置高度(單位:)和時間(單位:)之間的函數(shù)關(guān)系;(2)小球在內(nèi)經(jīng)過最高點的次數(shù)恰為50次,求的取值范圍19.若關(guān)于的不等式的解集為(1)求的值;(2)求不等式的解集.20.如圖,四棱錐P-ABCD的底面為平行四邊形,M為PC中點(1)求證:BA∥平面PCD;(2)求證:AP∥平面MBD21.為持續(xù)推進(jìn)“改善農(nóng)村人居環(huán)境,建設(shè)宜居美麗鄉(xiāng)村”,某村委計劃在該村廣場旁一矩形空地進(jìn)行綠化.如圖所示,兩塊完全相同的長方形種植綠草坪,草坪周圍(斜線部分)均擺滿寬度相同的花,已知兩塊綠草坪的面積均為400平方米.(1)若矩形草坪的長比寬至少多9米,求草坪寬的最大值;(2)若草坪四周及中間的花壇寬度均為2米,求整個綠化面積的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù),可判斷可能在的象限,根據(jù),可判斷可能在的象限,綜合分析,即可得答案.【詳解】由,可得的終邊在第一象限或第二象限或與y軸正半軸重合,由,可得的終邊在第二象限或第四象限,因為,同時成立,所以是第二象限角.故選:B2、C【解析】∵集合A={-2,1},B={-1,2},定義集合AB={x|x=x1x2,x1∈A,x2∈B},∴AB={2,-4,-1},故AB中所有元素之積為:2×(-4)×(-1)=8故選C3、C【解析】由α是第三象限角,且sin(),可得為第二象限角,即可得,然后結(jié)合,利用兩角和的正弦公式展開運算即可.【詳解】解:因為α是第三象限角,則,又sin(),所以,即為第二象限角,則,則,故選:C.【點睛】本題考查了角的拼湊,重點考查了兩角和的正弦公式,屬基礎(chǔ)題.4、C【解析】由可知與符號相同,且均為正,則,即,即可判斷選項【詳解】由題,因為,所以與符號相同,由于在中,與不可能均為負(fù),所以,,又因為,所以,即,所以,所以三角形是銳角三角形故選:C【點睛】本題考查判斷三角形的形狀,考查三角函數(shù)值的符號5、C【解析】把該幾何體補(bǔ)成正方體ABCD-A1B1C1D1,此多面體ABCDB1C1D1的體積V=-,求之即可【詳解】如圖,把該幾何體補(bǔ)成正方體ABCD-A1B1C1D1,此多面體ABCDB1C1D1的體積V=-=63-=180故選C【點睛】本題主要考查四棱錐體積的求法,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題6、C【解析】,,即①,同理可得②,①+②得,故選C考點:1.平面向量共線充要條件;2.向量的數(shù)量積運算7、D【解析】根據(jù)奇偶性定義和單調(diào)性的性質(zhì)可得到的奇偶性和單調(diào)性,由此將恒成立的不等式化為,通過求解的最大值,可知,由此得到結(jié)果.【詳解】,是定義在上的奇函數(shù),又,為增函數(shù),為減函數(shù),為增函數(shù).由得:,,整理得:,,,,的取值不可能是.故選:D.【點睛】方法點睛:本題考查利用函數(shù)單調(diào)性和奇偶性求解函數(shù)不等式的問題,解決此類問題中,奇偶性和單調(diào)性的作用如下:(1)奇偶性:統(tǒng)一不等式兩側(cè)符號,同時根據(jù)奇偶函數(shù)的對稱性確定對稱區(qū)間的單調(diào)性;(2)單調(diào)性:將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量之間的大小關(guān)系.8、A【解析】根據(jù)圖象可得:,,,.,則.令,,求函數(shù)的值域,即可得出結(jié)果.【詳解】畫出函數(shù)的大致圖象如下:根據(jù)圖象可得:若方程有四個不同的解,,,,且,則,,,.,,,則.令,,而函數(shù)在單調(diào)遞增,所以,則.故選:A.【點睛】本題考查函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查運算求解能力,求解時注意借助圖象分析問題,屬于中檔題.9、C【解析】對函數(shù)進(jìn)行化簡,即可求出最值.【詳解】,∴當(dāng)時,取得最大值為3.故選:C.10、A【解析】依題意,設(shè)所求直線的一般式方程為,把點坐標(biāo)代入求解,從而求出一般式方程.【詳解】設(shè)經(jīng)過點且垂直于直線的直線的一般式方程為,把點坐標(biāo)代入可得:,解得,所求直線方程為:.故選:A【點睛】本題考查了直線的方程、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)函數(shù)解析式畫出函數(shù)圖象,則函數(shù)的零點個數(shù),轉(zhuǎn)化為函數(shù)與有三個交點,結(jié)合函數(shù)圖象判斷即可;【詳解】解:因為,函數(shù)圖象如下所示:依題意函數(shù)恰有三個不同的零點,即函數(shù)與有三個交點,結(jié)合函數(shù)圖象可得,即;故答案為:12、【解析】根據(jù)題意在同一個坐標(biāo)系中畫出在內(nèi)的函數(shù)圖像,由圖求出不等式的解集【詳解】解:在同一個坐標(biāo)系中畫出在內(nèi)的函數(shù)圖像,如圖所示,則使成立的x的取值范圍是,故答案為:13、【解析】作出函數(shù)的圖象,結(jié)合圖象即可得的最小值.【詳解】如圖,在同一直角坐標(biāo)系中分別作出函數(shù)和的圖象,因為對,,故函數(shù)的圖象如圖所示:由圖可知,當(dāng)時,函數(shù)取得最小值.故答案為:.14、【解析】反比例函數(shù)在區(qū)間上單調(diào)遞減,要使函數(shù)在區(qū)間上單調(diào)遞減,則,還要滿足在上單調(diào)遞增,故求出結(jié)果【詳解】函數(shù)根據(jù)反比例函數(shù)的性質(zhì)可得:在區(qū)間上單調(diào)遞減要使函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在上單調(diào)遞增則,解得故實數(shù)的取值范圍是【點睛】本題主要考查了函數(shù)單調(diào)性的性質(zhì),需要注意反比例函數(shù)在每個象限內(nèi)是單調(diào)遞減的,而在定義域內(nèi)不是單調(diào)遞減的15、①.②.【解析】根據(jù)二倍角公式,化簡可得,分別討論位于第一、二、三、四象限,結(jié)合輔助角公式,可得的解析式,根據(jù)的范圍,即可得值域;作出圖象與,結(jié)合圖象的對稱性,可得答案.【詳解】由題意得當(dāng)時,即時,,又,所以;當(dāng)時,即時,,又,所以;當(dāng)時,即時,,又,所以;當(dāng)時,即時,,又,所以;綜上:函數(shù)的值域為.因為,所以,所以,作出圖象與圖象,如下如所示由圖象可得,所以故答案為:;16、【解析】由一元二次方程根與系數(shù)的關(guān)系可得,,再由

,運算求得結(jié)果【詳解】、是方程的兩個根,,,,,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)方程變成,令,化簡解關(guān)于的一元二次方程,從而求出的值.(2)將零點轉(zhuǎn)化為方程有實根,即時有解,令,,得:,從而得出取值范圍.【詳解】(1),令,則,解得,所以(2),時,設(shè),,,對稱軸為,時,,.18、(1),;(2)【解析】(1)首先根據(jù)題意得到,,從而得到,(2)根據(jù)題意,當(dāng)時,小球第一次到達(dá)最高點,從而得到,再根據(jù)周期為,即可得到.【詳解】(1)因為小球振動過程中最高點與最低點的距離為,所以因為在一次振動中,小球從最高點運動至最低點所用時間為,所以周期為2,即,所以所以,(2)由題意,當(dāng)時,小球第一次到達(dá)最高點,以后每隔一個周期都出現(xiàn)一次最高點,因為小球在內(nèi)經(jīng)過最高點的次數(shù)恰為50次,所以因為,所以,所以的取值范圍為(注:的取值范圍不考慮開閉)19、(1);(2).【解析】(1)由題意可知,方程的兩根為,結(jié)合根與系數(shù)的關(guān)系得出的值;(2)根據(jù)一元二次不等式的解法求解即可.【詳解】(1)由題意可知,方程的兩根為由根與系數(shù)的關(guān)系可知,,解得(2)由(1)可知,,即,解得即該不等式的解集為【點睛】本題主要考查了一元二次不等式的解法,屬于中檔題.20、(1)見解析(2)見解析【解析】(1)根據(jù)平行四邊形的性質(zhì)可知,結(jié)合直線與平面平行的判定定理可得結(jié)論;(2)設(shè),連接,由平行四邊形的性質(zhì)可知為中位線,從而得到,利用線面平行的判定定理,即可證出平面.【詳解】證明(1)∵如圖,四棱錐P-ABCD的底面為平行四邊形,∴BC∥AD,又∵AD?平面PAD,BC?平面PAD,∴BC∥平面PAD;(2)設(shè)AC∩BD=H,連接MH,∵H為平行四邊形ABCD對角線的交點,∴H為AC中點,又∵M(jìn)為PC中點,∴MH為△PAC中位線,可得MH∥PA,MH?平面MBD,PA?平面MBD,所以PA∥平面MBD【點睛】本題主要考查線面平行的判定定理,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論