山東泰安肥城市2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第1頁
山東泰安肥城市2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第2頁
山東泰安肥城市2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第3頁
山東泰安肥城市2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第4頁
山東泰安肥城市2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東泰安肥城市2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.瑞士數(shù)學(xué)家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn),其歐拉線方程為,則頂點(diǎn)C的坐標(biāo)是()A.() B.()C.() D.()2.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn)為,若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.3.如圖,雙曲線,是圓的一條直徑,若雙曲線過,兩點(diǎn),且離心率為,則直線的方程為()A. B.C. D.4.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點(diǎn),則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°5.已知正四面體的底面的中心為為的中點(diǎn),則直線與所成角的余弦值為()A. B.C. D.6.已知直線與圓交于兩點(diǎn),過分別作的垂線與軸交于兩點(diǎn),則A.2 B.3C. D.47.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B.C. D.8.設(shè)是周期為2的奇函數(shù),當(dāng)時,,則()A. B.C. D.9.已知“”的必要不充分條件是“或”,則實(shí)數(shù)的最小值為()A. B.C. D.10.在等比數(shù)列中,,,則等于A. B.C. D.或11.一組樣本數(shù)據(jù):,,,,,由最小二乘法求得線性回歸方程為,若,則實(shí)數(shù)m的值為()A.5 B.6C.7 D.812.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為第二象限角,若,則__________14.如圖,在長方體ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是側(cè)面BCC1B1上的動點(diǎn),且AP⊥BD1,記點(diǎn)P到平面ABCD的距離為d,則d的最大值為____________.15.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.16.若等比數(shù)列的前n項(xiàng)和為,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線(1)求曲線的方程;(2)設(shè)直線與交于兩點(diǎn),為何值時?18.(12分)已知直線過點(diǎn),且其傾斜角是直線的傾斜角的(1)求直線的方程;(2)若直線與直線平行,且點(diǎn)到直線的距離是,求直線的方程19.(12分)已知等差數(shù)列前n項(xiàng)和為,,,若對任意的正整數(shù)n成立,求實(shí)數(shù)的取值范圍.20.(12分)設(shè)A,B為曲線C:y=上兩點(diǎn),A與B的橫坐標(biāo)之和為4(1)求直線AB的斜率;(2)設(shè)M為曲線C上一點(diǎn),C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程21.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知橢圓經(jīng)過點(diǎn),橢圓E的一個焦點(diǎn)為(1)求橢圓E的方程;(2)若直線l過點(diǎn)且與橢圓E交于A,B兩點(diǎn).求的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質(zhì),以及重心的坐標(biāo),聯(lián)立方程組,即可求得結(jié)果.【詳解】因?yàn)椋实男甭?,又的中點(diǎn)坐標(biāo)為,故的垂直平分線的方程為,即,故△的外心坐標(biāo)即為與的交點(diǎn),即,不妨設(shè)點(diǎn),則,即;又△的重心的坐標(biāo)為,其滿足,即,也即,將其代入,可得,,解得或,對應(yīng)或,即或,因?yàn)榕c點(diǎn)重合,故舍去.故點(diǎn)的坐標(biāo)為.故選:A.2、A【解析】根據(jù)雙曲線的幾何性質(zhì)和平面幾何性質(zhì),建立關(guān)于a,b,c的方程,從而可求得雙曲線的離心率得選項(xiàng).【詳解】由題意可設(shè)右焦點(diǎn)為,因?yàn)?,且圓:,所以點(diǎn)在以焦距為直徑的圓上,則,設(shè)的中點(diǎn)為點(diǎn),則為的中位線,所以,則,又點(diǎn)在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點(diǎn)睛】方法點(diǎn)睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,利用和轉(zhuǎn)化為關(guān)于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點(diǎn)三角形,要注意雙曲線定義的應(yīng)用,運(yùn)用整體代換的方法可以減少計(jì)算量3、D【解析】由離心率求得,設(shè)出兩點(diǎn)坐標(biāo)代入雙曲線方程相減求得直線斜率與的關(guān)系得結(jié)論【詳解】由題意,則,即,由圓方程知,設(shè),,則,,又,兩式相減得,所以,直線方程為,即故選:D4、B【解析】取AD中點(diǎn)為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補(bǔ)角,據(jù)此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點(diǎn)為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補(bǔ)角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補(bǔ)角,當(dāng)∠EGF=60°時,∠FEG=60°,當(dāng)∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B5、B【解析】連接,再取中點(diǎn),連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點(diǎn),連接,因?yàn)榉謩e為VC,中點(diǎn),則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.6、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點(diǎn),∴,故選D.7、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A8、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點(diǎn)睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關(guān)于原點(diǎn)對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值9、A【解析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【詳解】,解得或,因?yàn)椤啊钡谋匾怀浞謼l件是“或”,所以.實(shí)數(shù)的最小值為.故選:A10、D【解析】∵為等比數(shù)列,∴,又∴為的兩個不等實(shí)根,∴∴或∴故選D11、B【解析】求出樣本的中心點(diǎn),再利用回歸直線必過樣本的中心點(diǎn)計(jì)算作答.【詳解】依題意,,則這個樣本的中心點(diǎn)為,因此,,解得,所以實(shí)數(shù)m的值為6.故選:B12、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出,再利用二倍角公式求的值.【詳解】因?yàn)闉榈诙笙藿牵?,所?所以.故答案為【點(diǎn)睛】本題主要考查同角三角函數(shù)的平方關(guān)系,考查二倍角的正弦公式,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.14、##【解析】以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得的坐標(biāo)之間的關(guān)系,以及坐標(biāo)的范圍,即可求得結(jié)果.【詳解】以D為原點(diǎn),為x軸,為y軸,為z軸,建立空間直角坐標(biāo)系如下所示:設(shè),則,,∵,∴,解得,因?yàn)?,所以c的最大值為,即點(diǎn)P到平面的距離d的最大值為.故答案為:.15、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設(shè),所以.由題得平面,則其體對角線與底面所成角為,因?yàn)?所以.故答案為:16、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因?yàn)?,若時,可得,故,所以,化簡得,整理得,解得或,因?yàn)?,解得,所?故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意可得:點(diǎn)的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,解出可得橢圓的標(biāo)準(zhǔn)方程(2)設(shè),,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關(guān)系代入解得【詳解】解:(1)由題意可得:點(diǎn)的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,可得橢圓的標(biāo)準(zhǔn)方程為:(2)設(shè),,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當(dāng)時,能使【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、數(shù)量積運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題18、(1);(2)或【解析】(1)先求得直線的傾斜角,由此求得直線的傾斜角和斜率,進(jìn)而求得直線的方程;(2)設(shè)出直線的方程,根據(jù)點(diǎn)到直線的距離列方程,由此求解出直線的方程【詳解】解(1)直線的傾斜角為,∴直線的傾斜角為,斜率為,又直線過點(diǎn),∴直線的方程為,即;(2)設(shè)直線的方程為,則點(diǎn)到直線的距離,解得或∴直線的方程為或19、【解析】設(shè)等差數(shù)列的公差為,根據(jù)題意得,解方程得,,進(jìn)而得,故恒成立,再結(jié)合二次函數(shù)的性質(zhì)得當(dāng)或4時,取得最小值,進(jìn)而得答案.【詳解】解:設(shè)等差數(shù)列的公差為,由已知,.聯(lián)立方程組,解得,.所以,,由題意,即.令,其圖象為開口向上的拋物線,對稱軸為,所以當(dāng)或4時,取得最小值,所以實(shí)數(shù)的取值范圍是.20、(1)1;(2)y=x+7【解析】(1)設(shè)A(x1,y1),B(x2,y2),直線AB的斜率k==,代入即可求得斜率;(2)由(1)中直線AB的斜率,根據(jù)導(dǎo)數(shù)的幾何意義求得M點(diǎn)坐標(biāo),設(shè)直線AB的方程為y=x+m,與拋物線聯(lián)立,求得根,結(jié)合弦長公式求得AB,由知,|AB|=2|MN|,從而求得參數(shù)m.【詳解】解:(1)設(shè)A(x1,y1),B(x2,y2),則x1≠x2,y1=,y2=,x1+x2=4,于是直線AB的斜率k===1(2)由y=,得y′=設(shè)M(x3,y3),由題設(shè)知=1,解得x3=2,于是M(2,1)設(shè)直線AB的方程為y=x+m,故線段AB的中點(diǎn)為N(2,2+m),|MN|=|m+1|將y=x+m代入y=得x2-4x-4m=0當(dāng)Δ=16(m+1)>0,即m>-1時,x1,2=2±2從而|AB|=|x1-x2|=由題設(shè)知|AB|=2|MN|,即=2(m+1),解得m=7所以直線AB的方程為y=x+721、(1);(2).【解析】(1)將條件化為基本量并解出,進(jìn)而求得答案;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論