版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省常德市武陵區(qū)第一中學(xué)2025屆高二上數(shù)學(xué)期末預(yù)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則下列說法錯(cuò)誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是2.曲線:在點(diǎn)處的切線方程為A. B.C. D.3.如圖,在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,4.如圖,已知最底層正方體的棱長為a,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn),依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.5.在四面體中,為的中點(diǎn),為棱上的點(diǎn),且,則()A. B.C. D.6.己知F為拋物線的焦點(diǎn),過F作兩條互相垂直的直線,,直線與C交于A、B兩點(diǎn),直線與C交于D、E兩點(diǎn),則的最小值為()A.24 B.22C.20 D.167.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動(dòng)點(diǎn),且滿足,則四棱錐體積的最小值為()A. B.C. D.8.已知函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.9.圓:與圓:的位置關(guān)系是()A.內(nèi)切 B.外切C.相交 D.相離10.下面四個(gè)條件中,使成立的充分而不必要的條件是A. B.C. D.11.已知點(diǎn)是拋物線的焦點(diǎn),點(diǎn)為拋物線上的任意一點(diǎn),為平面上點(diǎn),則的最小值為A.3 B.2C.4 D.12.若函數(shù),則()A. B.C.0 D.1二、填空題:本題共4小題,每小題5分,共20分。13.必然事件的概率是________.14.已知函數(shù),則________15.函數(shù)單調(diào)增區(qū)間為______.16.下方莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項(xiàng)和為,當(dāng)時(shí),;數(shù)列中,.直線經(jīng)過點(diǎn)(1)求數(shù)列的通項(xiàng)公式和;(2)設(shè),求數(shù)列的前n項(xiàng)和,并求的最大整數(shù)n18.(12分)已知,,函數(shù),直線是函數(shù)圖象的一條對稱軸(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;(2)若,,的面積為,求的周長19.(12分)曲線的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為,C上的點(diǎn)M滿足,且直線的斜率之積等于(1)求C的方程;(2)過點(diǎn)的直線l交C于A,B兩點(diǎn),若,其中,證明:20.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)若不等式的解集為,求實(shí)數(shù)的取值范圍.21.(12分)如圖,四棱錐中,,,,平面.(1)在線段上是否存在一點(diǎn)使得平面?若存在,求出的位置;若不存在,請說明理由;(2)求四棱錐的體積.22.(10分)已知二次函數(shù).(1)若時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.(2)解關(guān)于的不等式(其中).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項(xiàng)即可判斷作答.【詳解】對于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯(cuò)誤;對于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D2、A【解析】因?yàn)?,所以曲線在點(diǎn)(1,0)處的切線的斜率為,所以切線方程為,即,選A3、A【解析】設(shè)平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,,0,,,1,,,1,,,1,,,0,,設(shè)平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.4、D【解析】由已知可判斷出所有這些正方體的體積構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,然后求和可得答案.【詳解】最底層上面第一個(gè)正方體的棱長為,其體積為,上面第二個(gè)正方體的棱長為,其體積為,上面第三個(gè)正方體的棱長為,其體積為,所有這些正方體的體積構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,其前項(xiàng)和為,當(dāng),,所以所有這些正方體的體積之和將趨近于.故選:D.5、A【解析】利用空間向量加法運(yùn)算,減法運(yùn)算,數(shù)乘運(yùn)算即可得到答案.【詳解】如圖故選:A6、A【解析】由拋物線的性質(zhì):過焦點(diǎn)的弦長公式計(jì)算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因?yàn)?,所以,所以,故選:A.7、D【解析】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,分析可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn)的橢圓,求出橢圓的方程,可知當(dāng)點(diǎn)為橢圓與棱或的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,設(shè)點(diǎn),其中,,則、,因?yàn)槠矫?,平面,則,所以,,同理可得,所以,,所以點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且長軸長為的橢圓的一部分,則,,,所以,點(diǎn)的軌跡方程為,點(diǎn)到平面的距離為,當(dāng)點(diǎn)為曲線與棱或棱的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.8、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個(gè)零點(diǎn),等價(jià)于函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),,求導(dǎo),令,得當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;故當(dāng)時(shí),函數(shù)取得極小值;當(dāng)時(shí),函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實(shí)數(shù)的取值范圍是故選:B【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.9、A【解析】先計(jì)算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關(guān)系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.10、A【解析】由,但無法得出,A滿足;由、均無法得出,不滿足“充分”;由,不滿足“不必要”.考點(diǎn):不等式性質(zhì)、充分必要性.11、A【解析】作垂直準(zhǔn)線于點(diǎn),根據(jù)拋物線的定義,得到,當(dāng)三點(diǎn)共線時(shí),的值最小,進(jìn)而可得出結(jié)果.【詳解】如圖,作垂直準(zhǔn)線于點(diǎn),由題意可得,顯然,當(dāng)三點(diǎn)共線時(shí),的值最??;因?yàn)?,,?zhǔn)線,所以當(dāng)三點(diǎn)共線時(shí),,所以.故選A【點(diǎn)睛】本題主要考查拋物線上任一點(diǎn)到兩定點(diǎn)距離的和的最值問題,熟記拋物線的定義與性質(zhì)即可,屬于常考題型.12、A【解析】構(gòu)造函數(shù),再用積的求導(dǎo)法則求導(dǎo)計(jì)算得解.【詳解】令,則,求導(dǎo)得:,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】直接由必然事件的定義求解【詳解】因?yàn)楸厝皇录且欢ㄒl(fā)生的,所以必然事件的概率是1,故答案為:114、.【解析】將代入計(jì)算,利用和互為相反數(shù),作差可得,計(jì)算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時(shí)成立.故答案為:.15、【解析】利用導(dǎo)數(shù)法求解.【詳解】因?yàn)楹瘮?shù),所以,當(dāng)時(shí),,所以的單調(diào)增區(qū)間是,故答案為:16、9【解析】閱讀莖葉圖,由甲組數(shù)據(jù)的中位數(shù)為可得,乙組的平均數(shù):,解得:,則:點(diǎn)睛:莖葉圖的繪制需注意:(1)“葉”的位置只有一個(gè)數(shù)字,而“莖”的位置的數(shù)字位數(shù)一般不需要統(tǒng)一;(2)重復(fù)出現(xiàn)的數(shù)據(jù)要重復(fù)記錄,不能遺漏,特別是“葉”的位置的數(shù)據(jù)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2),7【解析】(1)根據(jù)之間的遞推關(guān)系,可寫出。,采用和相減得方法,可求得,由題意可推得為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式可求得答案;(2)寫出的表達(dá)式,利用錯(cuò)位相減法可求得數(shù)列的前n項(xiàng)和,進(jìn)而利用數(shù)列的單調(diào)性求的最大整數(shù)n【小問1詳解】∵,∴,則,∴,即,得又,∴,即,可得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則;∵點(diǎn)在直線上,∴,∴,即數(shù)列是等差數(shù)列,又,∴;【小問2詳解】∵,∴,∴,∴,兩式相減可得:,∴,設(shè),則,故,是單調(diào)遞增的故當(dāng)時(shí),單調(diào)遞增的,當(dāng)時(shí),;當(dāng)時(shí),,故滿足的最大整數(shù)18、(1),單調(diào)遞增區(qū)間為.(2)【解析】(1)先利用向量數(shù)量積運(yùn)算、二倍角公式、輔助角公式求出,再求單增區(qū)間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數(shù),所以.因?yàn)橹本€是函數(shù)圖象的一條對稱軸,所以,所以,又,所以當(dāng)k=0時(shí),符合題意,此時(shí)要求的單調(diào)遞增區(qū)間,只需,解得:,所以的單調(diào)遞增區(qū)間為.【小問2詳解】由于,所以,所以.因?yàn)?,所?因?yàn)榈拿娣e為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長.19、(1)(2)證明見解析【解析】(1)由橢圓定義可得到,再利用斜率公式及直線的斜率之積等于,列出方程,化簡對比系數(shù)可得;(2)分直線l的斜率為0和不為0兩種情況討論,利用可得到T在定直線上,且該直線是的中垂線即可得到證明.【小問1詳解】因?yàn)镃上的點(diǎn)M滿足,所以C表示焦點(diǎn)在x軸上的橢圓,且,即,,所以,設(shè),則,①所以直線的斜率,直線的斜率,由已知得,即,②由①②得,所以C的方程為【小問2詳解】當(dāng)直線l的斜率為0時(shí),A與重合,B與重合,,,成立.當(dāng)直線l的斜率不為0時(shí),設(shè)l的方程為聯(lián)立方程組,消x整理得所以,解得或設(shè),則,由,得,所以設(shè),由,得,所以,所以,所以點(diǎn)T在直線上,且,所以是等腰三角形,且,所以,綜上,【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)晴:本題第二問突破點(diǎn)是證明T在定直線上,且該直線是的垂直平分線,從而得到,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,轉(zhuǎn)化化歸思想.20、(1);(2).【解析】(1)將不等式分解因式,即可求得不等式解集;(2)根據(jù)不等式解集,考慮其對應(yīng)二次函數(shù)的特征,即可求出參數(shù)的范圍.【小問1詳解】當(dāng)時(shí),即,也即,則,解得或,故不等式解集為.【小問2詳解】不等式的解集為,即的解集為,也即的解集為,故其對應(yīng)二次函數(shù)的,解得.故實(shí)數(shù)的取值范圍為:.21、(1)存在,為的中點(diǎn),證明見解析;(2).【解析】(1)取的中點(diǎn),的中點(diǎn),連接,,,證明,由線面平行的判定定理即可求證;(2)先證明平面面,過點(diǎn)作于點(diǎn),即可證明面,在中,利用面積公式求出即為四棱錐的高,再由棱錐的體積公式即可求解.【詳解】(1)線段上存在點(diǎn)使得平面,為的中點(diǎn).證明如下:如圖取的中點(diǎn),的中點(diǎn),連接,,,因?yàn)?,分別為,的中點(diǎn),所以且因?yàn)榍遥?,且,所以四邊形為平行四邊形,可得,因?yàn)槊?,面,所以平面;?)過點(diǎn)作于點(diǎn),因?yàn)槠矫妫妫云矫婷?,因?yàn)?,面,平面面,所以面,因?yàn)?,,所以,,所以,即,所以,即為四棱錐的高,所以.22、(1);(2)答案見解析.【解析】(1)結(jié)合分離常數(shù)法、基本不等式求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鐵路旅客運(yùn)輸合同修訂版2篇
- 2025版圖書電子文檔txt下載代理授權(quán)合同3篇
- 二零二五年高校創(chuàng)新創(chuàng)業(yè)基地入駐服務(wù)合同3篇
- 2025年度個(gè)人小產(chǎn)權(quán)房屋買賣合同范本與稅務(wù)籌劃要點(diǎn)4篇
- 二零二五年度4S店汽車銷售區(qū)域代理合同范本3篇
- 二零二五版智慧交通管理系統(tǒng)建設(shè)與運(yùn)營協(xié)議3篇
- 二零二五年度馬鈴薯深加工廢棄物資源化利用合同4篇
- 二零二五年度創(chuàng)新型企業(yè)房屋租賃合同書
- 2025年度平房出租與城市可持續(xù)發(fā)展合作協(xié)議4篇
- 二零二五年度商業(yè)綜合體停車場投資建設(shè)合作協(xié)議3篇
- 第1課 隋朝統(tǒng)一與滅亡 課件(26張)2024-2025學(xué)年部編版七年級歷史下冊
- 2025-2030年中國糖醇市場運(yùn)行狀況及投資前景趨勢分析報(bào)告
- 冬日暖陽健康守護(hù)
- 水處理藥劑采購項(xiàng)目技術(shù)方案(技術(shù)方案)
- 2024級高一上期期中測試數(shù)學(xué)試題含答案
- 盾構(gòu)標(biāo)準(zhǔn)化施工手冊
- 山東省2024-2025學(xué)年高三上學(xué)期新高考聯(lián)合質(zhì)量測評10月聯(lián)考英語試題
- 不間斷電源UPS知識培訓(xùn)
- 三年級除法豎式300道題及答案
- 2024年江蘇省徐州市中考一模數(shù)學(xué)試題(含答案)
- 新一代飛機(jī)維護(hù)技術(shù)
評論
0/150
提交評論