2025屆西藏日喀則市南木林高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2025屆西藏日喀則市南木林高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2025屆西藏日喀則市南木林高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2025屆西藏日喀則市南木林高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2025屆西藏日喀則市南木林高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆西藏日喀則市南木林高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),則的值為()A. B.C. D.2.如圖,、分別是橢圓的左頂點和上頂點,從橢圓上一點向軸作垂線,垂足為右焦點,且,點到右準(zhǔn)線的距離為,則橢圓方程為()A. B.C. D.3.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.4.將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ值為()A.-3或7 B.-2或8C0或10 D.1或115.已知等差數(shù)列的公差,若,,則該數(shù)列的前項和的最大值為()A.30 B.35C.40 D.456.青少年視力被社會普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.7.已知命題,,則()A., B.,C., D.,8.將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率是()A. B.C. D.9.如圖,是邊長為4的等邊三角形的中位線,將沿折起,使得點A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.10.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形11.《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人與下三人等,問各得幾何?”其意思為:“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得之和與丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此為等差數(shù)列,問五人各得多少錢?”(“錢”是古代一種重量單位),這個問題中戊所得為()A.錢 B.錢C.錢 D.錢12.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點,且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π二、填空題:本題共4小題,每小題5分,共20分。13.已知點,為拋物線:上不同于原點的兩點,且,則的面積的最小值為__________.14.已知經(jīng)過兩點,的直線的斜率為1,則a的值為___________.15.若p:存在,使是真命題,則實數(shù)a的取值范圍是______16.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點M在DG上,若直線MB與平面BEF所成的角為45°,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,若存在請求出的位置,不存在請說明理由.18.(12分)已知數(shù)列{an}的前n項和為Sn,an>0,a1<2,6Sn=(an+1)(an+2).(1)求證:數(shù)列{an}是等差數(shù)列;(2)令,數(shù)列{bn}的前n項和為Tn,求證:.19.(12分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點,(1)求證:平面平面;(2)求二面角的大小20.(12分)在平面直角坐標(biāo)系中,雙曲線的左、右兩個焦點為、,動點P滿足(1)求動點P的軌跡E的方程;(2)設(shè)過且不垂直于坐標(biāo)軸的動直線l交軌跡E于A、B兩點,問:線段上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?若存在,請給出證明:若不存在,請說明理由21.(12分)要設(shè)計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計才能使得總成本最低?22.(10分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B2、A【解析】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,求出點的坐標(biāo),根據(jù)可得出,可得出,,結(jié)合已知條件求得的值,可得出、的值,即可得出橢圓的方程.【詳解】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,由圖可知,點第一象限,將代入橢圓方程得,得,所以,點,易知點、,,,因為,則,得,可得,則,點到右準(zhǔn)線的距離為為,則,,因此,橢圓的方程為.故選:A.3、D【解析】先求定義域,再求導(dǎo)數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.4、A【解析】根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點到直線的距離公式列出關(guān)于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標(biāo)準(zhǔn)式方程得(x+1)2+(y﹣2)2=5,圓心坐標(biāo)為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點:直線與圓的位置關(guān)系5、D【解析】利用等差數(shù)列的性質(zhì)求出公差以及首項,再由等差數(shù)列的前項和公式即可求解.【詳解】等差數(shù)列,由,有,又,公差,所以,,得,,,∴當(dāng)或10時,最大,,故選:D6、B【解析】依題意該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B7、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.8、B【解析】由題意知直線的斜率為,設(shè)其傾斜角為,將直線繞著原點逆時針旋轉(zhuǎn),得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設(shè)其傾斜角為,則,將直線繞著原點逆時針旋轉(zhuǎn),則故新直線的斜率是.故選:B.9、A【解析】分別取的中點,易得,則點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設(shè)球心為,設(shè)外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點,在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設(shè)球心為,由為的中點,所以,因為平面平面,且平面平面,平面,所以平面,則,設(shè)外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷10、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.11、D【解析】根據(jù)題意將實際問題轉(zhuǎn)化為等差數(shù)列的問題即可解決【詳解】解:由題意,可設(shè)甲、乙、丙、丁、戊五人分得的錢分別為,,,,則,,,,成等差數(shù)列,設(shè)公差為,整理上面兩個算式,得:,解得,故選:12、C【解析】取中點,連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計算可得【詳解】取中點,連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點,則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),,利用可得即可求得,利用兩點間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當(dāng)且僅當(dāng)時等號成立,所以的面積的最小值為,故答案為:.【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵點是設(shè),坐標(biāo),采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.14、6【解析】根據(jù)經(jīng)過兩點的直線斜率計算公式即可求的參數(shù)a﹒【詳解】由題意可知,解得故答案為:615、【解析】將問題分離參數(shù)得到存在,使成立,可得結(jié)論.【詳解】存在,使,即存在,使,所以故答案為:16、##【解析】把該幾何體補成一個正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計算可得【詳解】把該幾何體補成一個正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在,點E為線段中點【解析】(1)通過作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),再求相關(guān)的向量坐標(biāo),求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點,因,則由平面?zhèn)让妫移矫鎮(zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側(cè)面,又側(cè)面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設(shè)在線段上是否存在一點E,使得二面角的大小為,由是直三棱柱,所以以點A為原點,以AC、所在直線分別為x,z軸,以過A點和AC垂直的直線為y軸,建立空間直角坐標(biāo)系,如圖所示,則,且設(shè),,得所以,設(shè)平面的一個法向量,由,得:,取,由(1)知平面,所以平面的一個法向量,所以,解得,∴點E為線段中點時,二面角的大小為.18、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)數(shù)列通項與前項和的關(guān)系,構(gòu)造新等式,作差整理得到,進而求解結(jié)論;(2)求出數(shù)列{an}的通項公式,再代入裂項求和即可.【小問1詳解】證明:因為,所以當(dāng)時,,兩式相減,得到,整理得,又因為an>0,所以,所以數(shù)列{an}是等差數(shù)列,公差為3;【小問2詳解】證明:當(dāng)n=1時,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因為a1<2,所以a1=1,由(1)可知公差d=3,所以an=a1+(n﹣1)d=1+(n﹣1)×3=3n﹣2,所以,所以=.19、(1)證明見解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;(2)建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,即可得解;【小問1詳解】證明:因為為的中點,,所以,又,所以四邊形為平行四邊形,因為,所以平行四邊形是矩形,所以,因為,所以,又因為平面平面,平面平面面,所以平面,因為面,所以,又因為,平面,所以平面,因為平面,所以平面平面;【小問2詳解】解:由(1)可得:兩兩垂直,如圖,分別以所在的直線為軸建立空間直角坐標(biāo)系,則則,設(shè)平面的一個法向量,由則,令,則,所以,設(shè)平面的一個法向量,所以,根據(jù)圖像可知二面角為銳二面角,所以二面角的大小為;20、(1);(2)存在,理由見解析.【解析】(1)根據(jù)題意用定義法求解軌跡方程;(2)在第一問的基礎(chǔ)上,設(shè)出直線l的方程,聯(lián)立橢圓方程,用韋達定理表達出兩根之和,兩根之積,求出直線l的垂直平分線,從而得到D點坐標(biāo),證明出結(jié)論.【小問1詳解】由題意得:,所以,,而,故動點P的軌跡E的方程為以點、為焦點的橢圓方程,由得:,,所以動點P的軌跡E的方程為;【小問2詳解】存,理由如下:顯然,直線l的斜率存在,設(shè)為,聯(lián)立橢圓方程得:,設(shè),,則,,要想以DA、DB為鄰邊的平行四邊形為菱形,則點D為AB垂直平分線上一點,其中,,則,故AB的中點坐標(biāo)為,則AB的垂直平分線為:,令得:,且無論為何值,,點D在線段上,滿足題意.21、當(dāng)圓柱底面半徑為,高為時,總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進而根據(jù)體積得到,然后求出表面積,進而運用導(dǎo)數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論