版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆北京市房山區(qū)房山中學(xué)數(shù)學(xué)高二上期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.2.已知雙曲線(,)的左、右焦點分別為,,點A的坐標(biāo)為,點P是雙曲線在第二象限的部分上一點,且,點Q是線段的中點,且,Q關(guān)于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.3.用數(shù)學(xué)歸納法證明“”時,由假設(shè)證明時,不等式左邊需增加的項數(shù)為()A. B.C. D.4.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.5.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.726.設(shè)雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A B.2C. D.7.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.8.已知四棱錐,底面為平行四邊形,分別為,上的點,,設(shè),則向量用為基底表示為()A. B.C. D.9.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知是兩個數(shù)1,9的等比中項,則圓錐曲線的離心率為()A.或 B.或C. D.11.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時間為()A.1h B.C. D.12.設(shè)拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是()A.6 B.8C.9 D.10二、填空題:本題共4小題,每小題5分,共20分。13.圓錐曲線的焦點在軸上,離心率為,則實數(shù)的值是__________.14.如圖將自然數(shù),…按到箭頭所指方向排列,并依次在,…等處的位置拐彎.如圖作為第一次拐彎,則第33次拐彎的數(shù)是___________,超過2021的第一個拐彎數(shù)是____________15.甲、乙兩人獨立地破譯一份密碼,已知各人能破譯的概率分別為,則密碼被成功破譯的概率_________16.定義方程的實數(shù)根叫做函數(shù)的“新駐點”.(1)設(shè),則在上的“新駐點”為___________;(2)如果函數(shù)與的“新駐點”分別為、,那么和的大小關(guān)系是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平行四邊形ABCD中,AB=1,BC=2,∠ABC=60°,四邊形ACEF為正方形,且平面ABCD⊥平面ACEF(1)證明:AB⊥CF;(2)求點C到平面BEF距離;(3)求平面BEF與平面ADF夾角的正弦值18.(12分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值19.(12分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線與雙曲線相交于兩點,且為的中點,求直線的方程20.(12分)已知橢圓的上一點處的切線方程為,橢圓C上的點與其右焦點F的最短距離為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若點P為直線上任一點,過P作橢圓的兩條切線PA,PB,切點為A,B,求證:21.(12分)已知直線和直線(1)若時,求a的值;(2)當(dāng)平行,求兩直線,的距離22.(10分)設(shè)Sn是等差數(shù)列{an}的前n項和,已知,S2=-3.(1)求{an}的通項公式;(2)若,求數(shù)列{bn}的前n項和Tn.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)等比數(shù)列的公比為,可得出,即可得解.【詳解】設(shè)等比數(shù)列的公比為,可得出.故選:C.2、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設(shè),易知:,由知:,即,整理得:.故選:C3、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時,寫出對應(yīng)的關(guān)系式,觀察計算即可【詳解】從到成立時,左邊增加的項為,因此增加的項數(shù)是,故選:C4、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點:軌跡方程5、C【解析】利用等差數(shù)列的求和公式結(jié)合角標(biāo)和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.6、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點在y軸上,設(shè)的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.7、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設(shè)是的中點,連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設(shè)正方體外接球的半徑為,則,所以外接球的表面積為,故選:.8、D【解析】通過尋找封閉的三角形,將相關(guān)向量一步步用基底表示即可.【詳解】.故選:D9、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A10、A【解析】根據(jù)題意可知,當(dāng)時,根據(jù)橢圓離心率公式,即可求出結(jié)果;當(dāng)時,根據(jù)雙曲線離心率公式,即可求出結(jié)果.【詳解】因為是兩個數(shù)1,9的等比中項,所以,所以,當(dāng)時,圓錐曲線,其離心率為;當(dāng)時,圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.11、A【解析】設(shè)小時后,相遇地點為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點,建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時間為,相遇地點為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因為20min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時間為1h.故選:A.點睛】12、A【解析】計算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點到該拋物線焦點的距離是.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓錐曲線焦點在軸上且離心率小于1,確定a,b求解即可.【詳解】因為圓錐曲線的焦點在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:14、①.②.【解析】根據(jù)題意得到拐彎處的數(shù)字與其序數(shù)的關(guān)系,歸納得到當(dāng)為奇數(shù)為;當(dāng)為為偶數(shù)為,分別代入,即可求解.【詳解】解:由題意,拐彎處的數(shù)字與其序數(shù)的關(guān)系,如下表:拐彎的序數(shù)012345678拐彎處的數(shù)1235710131721觀察拐彎處的數(shù)字的規(guī)律:第1個數(shù);第3個數(shù);第5個數(shù);第7個數(shù);,所以當(dāng)為奇數(shù)為;同理可得:當(dāng)為為偶數(shù)為;第33次拐彎的數(shù)是,當(dāng)時,可得,當(dāng)時,可得,所以超過2021第一個拐彎數(shù)是.故答案為:;.15、【解析】根據(jù)題意,由相互獨立事件概率的乘法公式可得密碼沒有被破譯的概率,進(jìn)而由對立事件的概率性質(zhì)分析可得答案【詳解】解:根據(jù)題意,甲乙兩人能成功破譯的概率分別是,,則密碼沒有被破譯,即甲乙都沒有成功破譯密碼概率,故該密碼被成功破譯的概率故答案為:16、①.②.【解析】(1)根據(jù)“新駐點”的定義求得,結(jié)合可得出結(jié)果;(2)求出的值,利用零點存在定理判斷所在的區(qū)間,進(jìn)而可得出與的大小關(guān)系.詳解】(1),,根據(jù)“新駐點”的定義得,即,可得,,解得,所以,函數(shù)在上的“新駐點”為;(2),則,根據(jù)“新駐點”的定義得,即.,則,由“新駐點”的定義得,即,構(gòu)造函數(shù),則函數(shù)在定義域上為增函數(shù),,,,由零點存在定理可知,,.故答案為:(1);(2).【點睛】本題考查導(dǎo)數(shù)的計算,是新定義的題型,關(guān)鍵是理解“新駐點”的定義.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)利用余弦定理計算AC,再證明即可推理作答.(2)以點A為原點,射線AB,AC,AF分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,借助空間向量計算點C到平面BEF的距離.(3)利用(2)中坐標(biāo)系,用向量數(shù)量積計算兩平面夾角余弦值,進(jìn)而求解作答.小問1詳解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,則,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以.【小問2詳解】因四邊形ACEF為正方形,即,由(1)知兩兩垂直,以點A為原點,射線AB,AC,AF分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,如圖,,,設(shè)平面的一個法向量,則,令,得,而,于是得點C到平面BEF的距離,所以點C到平面BEF的距離為.【小問3詳解】由(2)知,,設(shè)平面的一個法向量,則,令,得,,設(shè)平面BEF與平面ADF夾角為,,則有,,所以平面BEF與平面ADF夾角的正弦值為.【點睛】易錯點睛:空間向量求二面角時,一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進(jìn)行向量運算,要認(rèn)真細(xì)心,準(zhǔn)確計算18、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點,然后以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問1詳解】解:設(shè),則為、的中點,連接、,因為平面,平面,平面平面,則,因為為的中點,則為的中點,因為,為的中點,則,同理可證,,平面,,,則,,以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問2詳解】解:,,,因此,與所成角的余弦值為.【小問3詳解】解:,,因此,與平面所成角的正弦值為.19、(1)(2)【解析】(1)根據(jù)題意求出即可得出;(2)利用點差法求出直線斜率即可得出方程.【小問1詳解】∵,,∴,,∵,∴,∴,∴雙曲線的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè)以定點為中點的弦的端點坐標(biāo)為,可得,,由在雙曲線上,可得:,兩式相減可得以定點為中點的弦所在的直線斜率為:則以定點為中點的弦所在的直線方程為,即為,聯(lián)立方程得:,,符合,∴直線的方程為:.20、(1)(2)證明見解析【解析】(1)設(shè)為橢圓上的點,為橢圓的右焦點,求出然后求解最小值,推出,,,得到雙曲線方程(2)設(shè),,,,,即可得到,依題意可得以、為切點的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問1詳解】解:設(shè)為橢圓上的點,為橢圓的右焦點,因為,所以,又,所以當(dāng)且僅當(dāng)時,,因為,所以,,因為,所以,故橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】解:由(1)知,設(shè),,,,,所以,由題知,以為切點的橢圓切線方程為,以為切點的橢圓切線方程為,又點在直線、上,所以、,所以直線的方程為,當(dāng)時,直線的斜率不存在,直線斜率為,所以,當(dāng)時,,所以,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度觸控技術(shù)培訓(xùn)與認(rèn)證合同4篇
- 2025年收藏品市場交易規(guī)則制定與轉(zhuǎn)讓合同3篇
- 二零二五年度石油化工儲油罐采購合同樣本4篇
- 二零二四三方詢價采購合同-新能源汽車充電樁安裝與維護(hù)3篇
- A與B雙方合作經(jīng)營合同書2024版版B版
- 二零二四年專業(yè)講師團(tuán)隊簽約合作合同范本3篇
- 個人與企業(yè)2024年度庫房租賃承包合同3篇
- 2025年新型車庫設(shè)施銷售與技術(shù)支持合同4篇
- 2025年度車輛租賃合同終止協(xié)議范本(含車輛違章處理責(zé)任)4篇
- 2025年度室內(nèi)外裝飾設(shè)計與施工總承包合同模板4篇
- 部編版六年級下冊道德與法治全冊教案教學(xué)設(shè)計
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- 二年級數(shù)學(xué)上冊100道口算題大全 (每日一套共26套)
- 物流無人機垂直起降場選址與建設(shè)規(guī)范
- 肺炎臨床路徑
- 外科手術(shù)鋪巾順序
- 創(chuàng)新者的窘境讀書課件
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計作業(yè)改革新視角
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)三 APP的品牌建立與價值提供
- 電子競技范文10篇
- 食堂服務(wù)質(zhì)量控制方案與保障措施
評論
0/150
提交評論