版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省漳平市第一中學(xué)2025屆高二上數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進(jìn)行調(diào)查,欲抽取100名員工,應(yīng)當(dāng)抽取的一般員工人數(shù)為()A.100 B.15C.80 D.502.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點與短軸的一個端點構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.3.拋物線的焦點坐標(biāo)是()A. B.C. D.4.在直三棱柱中,,且,點是棱上的動點,則點到平面距離的最大值是()A. B.C.2 D.5.已知等比數(shù)列中,,,則公比()A. B.C. D.6.已知實數(shù)x,y滿足,則的取值范圍是()A. B.C. D.7.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.8.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數(shù)條直線,使得B.若,則存在無數(shù)條直線,使得C.若存在無數(shù)條直線,使得,則D.若存在無數(shù)條直線,使得,則9.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.10.如圖,在平行六面體中,AC與BD的交點為M.設(shè),則下列向量中與相等的向量是()A. B.C. D.11.設(shè)是橢圓的上頂點,若上的任意一點都滿足,則的離心率的取值范圍是()A. B.C. D.12.如圖,O是坐標(biāo)原點,P是雙曲線右支上的一點,F(xiàn)是E的右焦點,延長PO,PF分別交E于Q,R兩點,已知QF⊥FR,且,則E的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若,則S=________.14.?dāng)?shù)列中,,,設(shè)(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和;(3)若,為數(shù)列的前項和,求不超過的最大的整數(shù)15.已知橢圓:的左右焦點分別為,為橢圓上的一點,與橢圓交于.若△的內(nèi)切圓與線段在其中點處相切,與切于,則橢圓的離心率為_______16.已知函數(shù),若在上是增函數(shù),則實數(shù)的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和18.(12分)設(shè)圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點19.(12分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求20.(12分)已知函數(shù)(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,若關(guān)于x的不等式恒成立,試求a的取值范圍21.(12分)已知,(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時,,求實數(shù)a的取值范圍22.(10分)已知等比數(shù)列滿足,.(Ⅰ)求的通項公式;(Ⅱ)若,設(shè)(),記數(shù)列的前n項和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】按照比例關(guān)系,分層抽取.【詳解】由題意可知,所以應(yīng)當(dāng)抽取的一般員工人數(shù)為.故選:C2、A【解析】由橢圓的面積為和兩焦點與短軸的一個端點構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A3、C【解析】化為標(biāo)準(zhǔn)方程,利用焦點坐標(biāo)公式求解.【詳解】拋物線的標(biāo)準(zhǔn)方程為,所以拋物線的焦點在軸上,且,所以,所以拋物線的焦點坐標(biāo)為.故選:C4、D【解析】建立空間直角坐標(biāo)系,設(shè)出點的坐標(biāo),運用點到平面的距離公式,求出點到平面距離的最大值.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)第,則,,,設(shè)點,故,,.設(shè)設(shè)平面的法向量為,則即,取,則.所以點到平面距離.當(dāng),即時,距離有最大值為.故選:D.【點睛】本題考查空間內(nèi)點到面的距離最值問題,屬于中檔題.5、C【解析】利用等比中項的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項的性質(zhì)可得,解得,又,,故選:C.6、B【解析】實數(shù),滿足,通過討論,得到其圖象是橢圓、雙曲線的一部分組成的圖形,借助圖象分析可得的取值就是圖象上一點到直線距離范圍的2倍,求出切線方程根據(jù)平行直線距離公式算出最小值,和最大值的極限值即可得出答案.【詳解】因為實數(shù),滿足,所以當(dāng)時,,其圖象是位于第一象限,焦點在軸上的雙曲線的一部分(含點),當(dāng)時,其圖象是位于第四象限,焦點在軸上的橢圓的一部分,當(dāng)時,其圖象不存在,當(dāng)時,其圖象是位于第三象限,焦點在軸上的雙曲線的一部分,作出橢圓和雙曲線的圖象,其中圖象如下:任意一點到直線的距離所以,結(jié)合圖象可得的范圍就是圖象上一點到直線距離范圍的2倍,雙曲線,其中一條漸近線與直線平行,通過圖形可得當(dāng)曲線上一點位于時,取得最小值,無最大值,小于兩平行線與之間的距離的倍,設(shè)與其圖像在第一象限相切于點,由因為或(舍去)所以直線與直線的距離為此時,所以的取值范圍是故選:B【點睛】三種距離公式:(1)兩點間的距離公式:平面上任意兩點間的距離公式為;(2)點到直線的距離公式:點到直線的距離;(3)兩平行直線間的距離公式:兩條平行直線與間的距離.7、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計算轉(zhuǎn)化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力8、D【解析】根據(jù)直線和直線,直線和平面的位置關(guān)系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當(dāng)時,,則存在無數(shù)條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數(shù)條直線,使得,B正確;若存在無數(shù)條直線,使得,,,則,C正確;當(dāng)時,存在無數(shù)條直線,使得,D錯誤.故選:D.9、A【解析】設(shè)雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關(guān)于、的等式,即可求得雙曲線的離心率.【詳解】設(shè)雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.10、B【解析】根據(jù)代入計算化簡即可.【詳解】故選:B.11、C【解析】設(shè),由,根據(jù)兩點間的距離公式表示出,分類討論求出的最大值,再構(gòu)建齊次不等式,解出即可【詳解】設(shè),由,因為,,所以,因為,當(dāng),即時,,即,符合題意,由可得,即;當(dāng),即時,,即,化簡得,,顯然該不等式不成立故選:C【點睛】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值12、B【解析】令雙曲線E的左焦點為,連線即得,設(shè),借助雙曲線定義及直角用a表示出|PF|,,再借助即可得解.【詳解】如圖,令雙曲線E的左焦點為,連接,由對稱性可知,點線段中點,則四邊形是平行四邊形,而QF⊥FR,于是有是矩形,設(shè),則,,,在中,,解得或m=0(舍去),從而有,中,,整理得,,所以雙曲線E的離心率為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.14、(1)證明見解析;(2);(3)2021【解析】(1)將兩邊都加,證明是常數(shù)即可;(2)求出的通項,利用錯位相減法求解即可;(3)先求出,再求出的表達(dá)式,利用裂項相消法即可得解.【詳解】(1)將兩邊都加,得,而,即有,又,則,,所以數(shù)列是首項為,公比為的等比數(shù)列;(2)由(1)知,,則,,,因此,,所以;(3)由(2)知,于是得,則,因此,,所以不超過的最大的整數(shù)是202115、【解析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.16、【解析】根據(jù)函數(shù)在上是增函數(shù),分段函數(shù)在整個定義域內(nèi)單調(diào),則在每個函數(shù)內(nèi)單調(diào),注意銜接點的函數(shù)值.【詳解】解:因為函數(shù)在上是增函數(shù),所以在區(qū)間上是增函數(shù)且在區(qū)間上也是增函數(shù),對于函數(shù)在上是增函數(shù),則;①對于函數(shù),(1)當(dāng)時,,外函數(shù)為定義域內(nèi)的減函數(shù),內(nèi)函數(shù)在上是增函數(shù),根據(jù)復(fù)合函數(shù)“同增異減”可得時函數(shù)在區(qū)間上是減函數(shù),不符合題意,故舍去,(2)當(dāng)時,外函數(shù)為定義域內(nèi)的增函數(shù),要使函數(shù)在區(qū)間上是增函數(shù),則內(nèi)函數(shù)在上也是增函數(shù),且對數(shù)函數(shù)真數(shù)大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數(shù)則在銜接點處函數(shù)值應(yīng)滿足:,化簡得,③由①②③得,,所以實數(shù)的取值范圍是.故答案為:.【點睛】方法點睛:利用單調(diào)性求參數(shù)方法如下:(1)依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較;(2)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;(3)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點的取值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件列式求出數(shù)列的首項即可作答.(2)由(1)的結(jié)論求出,再借助裂項相消法計算作答.【小問1詳解】因為數(shù)列是公比為2的等比數(shù)列,且是與的等差中項,則有,即,解得,所以.【小問2詳解】由(1)知,,則,即有,所以.18、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進(jìn)行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當(dāng)直線MN斜率不存在時,設(shè)直線方程為,則,,,,則,∴,此時直線MN的方程為當(dāng)直線MN斜率存在時,設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。19、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時,線段中點坐標(biāo),中垂線方程:,;當(dāng)時,線段中點坐標(biāo),中垂線方程:,,綜上所述:.20、(1)的減區(qū)間為,增區(qū)間為(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用分離參數(shù)法,結(jié)合構(gòu)造函數(shù)法以及導(dǎo)數(shù)求得的取值范圍.【小問1詳解】當(dāng)時,,,所以在區(qū)間遞減;在區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電力行業(yè)箱式變壓器租賃與優(yōu)化方案協(xié)議3篇
- 商場場地租賃合同書
- 家電購銷合同范本
- 投資理財協(xié)議
- 2025版精細(xì)化管理物業(yè)咨詢服務(wù)協(xié)議范本6篇
- 二零二五年度個人網(wǎng)店經(jīng)營權(quán)轉(zhuǎn)移合同樣本4篇
- 簡單貨物運輸合同協(xié)議書
- 建設(shè)工程用扣件買賣合同
- 二零二五年度高空作業(yè)人員鋼管腳手架操作培訓(xùn)合同4篇
- 新能源分布式發(fā)電項目投資協(xié)議書
- 云南省普通高中學(xué)生綜合素質(zhì)評價-基本素質(zhì)評價表
- 2024年消防產(chǎn)品項目營銷策劃方案
- 旅游公司發(fā)展規(guī)劃
- 聞道課件播放器
- 03軸流式壓氣機(jī)b特性
- 五星級酒店收入測算f
- 大數(shù)據(jù)與人工智能ppt
- 人教版八年級下冊第一單元英語Unit1 單元設(shè)計
- GB/T 9109.5-2017石油和液體石油產(chǎn)品動態(tài)計量第5部分:油量計算
- 邀請函模板完整
- 2023年江蘇省南京市中考化學(xué)試卷2
評論
0/150
提交評論