




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省廉江市實驗學校數(shù)學高三第一學期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為虛數(shù)單位,則復數(shù)在復平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.3.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.4.若復數(shù)z滿足,則()A. B. C. D.5.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.6.馬林●梅森是17世紀法國著名的數(shù)學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎(chǔ)上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數(shù)論方面的這一貢獻,將形如2P﹣1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是()A.3 B.4 C.5 D.67.已知雙曲線的左焦點為,直線經(jīng)過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.8.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.9.當輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.10.已知實數(shù)滿足約束條件,則的最小值是A. B. C.1 D.411.函數(shù)的圖象大致為()A. B.C. D.12.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.平面向量與的夾角為,,,則__________.14.曲線在點處的切線方程為______.15.已知,復數(shù)且(為虛數(shù)單位),則__________,_________.16.設(shè)為定義在上的偶函數(shù),當時,(為常數(shù)),若,則實數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.18.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.19.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.20.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點社區(qū)抽取戶居民進行調(diào)查,得到如下的列聯(lián)表.分類意識強分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學期望.參考公式:,其中.下面的臨界值表僅供參考21.(12分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.22.(10分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)復數(shù)的運算,化簡得到,再結(jié)合復數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復數(shù)的運算,可得,所對應(yīng)的點為位于第四象限.故選D.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何意義,其中解答中熟記復數(shù)的運算法則,準確化簡復數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當且僅當,即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.3、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.4、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數(shù)的運算和模的計算,意在考查學生對這些知識的理解掌握水平.5、A【解析】
由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.【點睛】本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎(chǔ)題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉(zhuǎn)化為乘法運算.6、C【解析】
模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎(chǔ)題.7、A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關(guān)系進行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關(guān)系和已知條件即可求解,屬于一般性題目.8、C【解析】
確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.9、A【解析】
根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.10、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當直線經(jīng)過點時,z取得最小值,由,解得,所以,所以,故選B.11、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.12、C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進而即可求出結(jié)果,屬于基礎(chǔ)題型.14、【解析】
對函數(shù)求導,得出在處的一階導數(shù)值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點睛】本題考查運用函數(shù)的導函數(shù)求函數(shù)在切點處的切線方程,關(guān)鍵在于求出在切點處的導函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.15、【解析】∵復數(shù)且∴∴∴∴,故答案為,16、1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當時,,所以,所以實數(shù)的值為1.故答案為:1【點睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導數(shù)求得函數(shù)最值即可;(2),導出導函數(shù),問題轉(zhuǎn)化為在上有解.再用導數(shù)研究的性質(zhì)可得.【詳解】解:(1)因為當時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當時,,設(shè),,當時,,則在上單調(diào)遞增,當時,,則在上單調(diào)遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設(shè),則,當時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數(shù)解.而,即方程無實數(shù)解.故不存在實數(shù),使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導數(shù)的幾何意義,由導數(shù)幾何把問題進行轉(zhuǎn)化是解題關(guān)鍵.本題屬于困難題.18、(1);(2)存在,且方程為或.【解析】
(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點,則,結(jié)合韋達定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當斜率不存在時,以為直徑的圓顯然不經(jīng)過橢圓的左頂點,所以可設(shè)直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點,則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點,直線的方程為或.【點睛】本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應(yīng)注意不要忽視判別式的作用.19、(1)見解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設(shè),連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標系,為等邊三角形,,,,設(shè)平面的法向量為,則,即,∴可取,設(shè)平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【點睛】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時先證明三條兩兩垂直的直線,屬于中檔題.20、(1)有的把握認為居民分類意識強與政府宣傳普及工作有很大關(guān)系.見解析(2)分布列見解析,期望為1.【解析】
(1)由在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為可得列聯(lián)表,然后計算后可得結(jié)論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機抽取戶,到分類意識強的概率為,可得分類意識強的有戶,故可得列聯(lián)表如下:分類意識強分類意識弱合計試點后試點前合計因為的觀測值,所以有的把握認為居民分類意識強與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點前分類意識強的戶居民中,選出戶進行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點睛】本題考查獨立性檢驗,考查隨機變量的概率分布列和數(shù)學期望.考查學生的數(shù)據(jù)處理能力和運算求解能力.21、(1);(2)見解析【解析】
(1)根據(jù)拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設(shè)直線,的方程分別為和且,,,可得,,,的坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 促進工資性收入合理增長實施方案
- 一個神奇的故事想象作文(6篇)
- 《魯迅作品賞析:初中語文文學經(jīng)典閱讀教案》
- 房產(chǎn)交易完成產(chǎn)權(quán)歸屬證明書(6篇)
- 中小學語文成語故事分享教案
- 初中清明掃墓120詞英語作文15篇范文
- 一年級寫景小作文日落美景250字14篇
- 《中國古代文學流派簡介:大一語文文學史教案》
- 現(xiàn)代汽車技術(shù)維修試題集
- 琵琶行文學風格與音樂描寫技巧:高中語文教案研究
- 海氏(hay)職位分析法-介紹、實踐與評價合集課件
- 有趣的英漢互譯-課件
- 潔凈區(qū)空氣潔凈度級別空氣懸浮粒子的標準規(guī)定表
- 人教版五年級下冊期末語文試卷答題卡及答案
- 步進式加熱爐耐材砌筑施工方案
- GB-T12232-2005- 通用閥門 法蘭連接鐵制閘閥
- 2022年中國電信店長技能四級認證教材
- (最新整理)《跨文化溝通》PPT課件
- 怎樣分析日本氣象傳真圖
- 常見散料堆積密度匯總-共10
- 視頻監(jiān)控巡查記錄
評論
0/150
提交評論