寧夏石嘴山市三中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
寧夏石嘴山市三中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
寧夏石嘴山市三中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
寧夏石嘴山市三中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
寧夏石嘴山市三中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

寧夏石嘴山市三中2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線上存在兩點A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.152.已知為等腰直角三角形的直角頂點,以為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到幾何體,是底面圓上的弦,為等邊三角形,則異面直線與所成角的余弦值為()A. B.C. D.3.若離散型隨機(jī)變量的所有可能取值為1,2,3,…,n,且取每一個值的概率相同,若,則n的值為()A.4 B.6C.9 D.104.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.15.等差數(shù)列的公差,且,,則的通項公式是()A. B.C. D.6.已知圓,則圓上的點到坐標(biāo)原點的距離的最小值為()A.-1 B.C.+1 D.67.?dāng)?shù)列1,6,15,28,45,...中的每一項都可用如圖所示的六邊形表示出來,故稱它們?yōu)榱呅螖?shù),那么第10個六邊形數(shù)為()A.153 B.190C.231 D.2768.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.9.執(zhí)行如圖所示的流程圖,則輸出k的值為()A.3 B.4C.5 D.210.已知函數(shù),若在處取得極值,且恒成立,則實數(shù)的最大值為()A. B.C. D.11.下列求導(dǎo)運算正確的是()A. B.C. D.12.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長方體ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是側(cè)面BCC1B1上的動點,且AP⊥BD1,記點P到平面ABCD的距離為d,則d的最大值為____________.14.某學(xué)校要從6名男生和4名女生中選出3人擔(dān)任進(jìn)博會志愿者,則所選3人中男女生都有的概率為___________.(用數(shù)字作答)15.已知拋物線:,過焦點作傾斜角為的直線與交于,兩點,,在的準(zhǔn)線上的投影分別為,兩點,則__________.16.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,且.(1)求C;(2)若D是BC的中點,,,求AB的長.18.(12分)已知某學(xué)校的初中、高中年級的在校學(xué)生人數(shù)之比為9:11,該校為了解學(xué)生的課下做作業(yè)時間,用分層抽樣的方法在初中、高中年級的在校學(xué)生中共抽取了100名學(xué)生,調(diào)查了他們課下做作業(yè)的時間,并根據(jù)調(diào)查結(jié)果繪制了如下頻率分布直方圖:(1)在抽取的100名學(xué)生中,初中、高中年級各抽取的人數(shù)是多少?(2)根據(jù)頻率分布直方圖,估計學(xué)生做作業(yè)時間的中位數(shù)和平均時長(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(3)另據(jù)調(diào)查,這100人中做作業(yè)時間超過4小時的人中2人來自初中年級,3人來自高中年級,從中任選2人,恰好1人來自初中年級,1人來自高中年級的概率是多少19.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,20.(12分)在平面直角坐標(biāo)系中,動點,滿足,記點的軌跡為(1)請說明是什么曲線,并寫出它的方程;(2)設(shè)不過原點且斜率為的直線與交于不同的兩點,,線段的中點為,直線與交于兩點,,請判斷與的關(guān)系,并證明你的結(jié)論21.(12分)已知數(shù)列的前n項和為,且(1)求數(shù)列的通項公式;(2)若,數(shù)列的前n項和為,求的值22.(10分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題可知A,B為半圓C與拋物線的交點,利用韋達(dá)定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準(zhǔn)線,點為拋物線的焦點,依題意可知A,B為半圓C與拋物線的交點,由,得,設(shè),則,,∴.故選:D.2、B【解析】設(shè),過點作的平行線,與平行的半徑交于點,找出異面直線與所成角,然后通過解三角形可得出所求角的余弦值.【詳解】設(shè),過點作的平行線,與平行的半徑交于點,則,,所以為異面直線與所成的角,在三角形中,,,所以.故選:B.【點睛】本題考查異面直線所成角余弦值的計算,一般通過平移直線的方法找到異面直線所成的角,考查計算能力,屬于中等題.3、D【解析】根據(jù)分布列即可求出【詳解】因為,所以故選:D4、A【解析】分截距都為零和都不為零討論即可.【詳解】當(dāng)截距都為零時,直線過原點,;當(dāng)截距不為零時,,.綜上:或.故選:A.5、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個根,由可知,所以,從而可求出,可得到通項公式.【詳解】解:因為數(shù)列為等差數(shù)列,所以,因為,所以可以看成一元二次方程的兩個根,因為,所以,所以,解得,所以故選:C【點睛】此題考查的是等差數(shù)列的通項公式和性質(zhì),屬于基礎(chǔ)題.6、A【解析】先求出圓心和半徑,求出圓心到坐標(biāo)原點的距離,從而求出圓上的點到坐標(biāo)原點的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點的距離為,故圓上的點到坐標(biāo)原點的距離最小值為.故選:A7、B【解析】細(xì)心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形可知,,,,,,,據(jù)此即可求解.【詳解】由題意知,數(shù)列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:B【點睛】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規(guī)律是求解本題的關(guān)鍵;屬于中檔題、探索型試題.8、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因為切線與直線平行,所以切線方程可設(shè)為因為切線過點P(2,2),所以因為與圓相切,所以故選:C9、B【解析】根據(jù)程序框圖運行程序,直到滿足,輸出結(jié)果即可.【詳解】按照程序框圖運行程序,輸入,則,,不滿足,循環(huán);,,不滿足,循環(huán);,,不滿足,循環(huán);,,滿足,輸出結(jié)果:故選:B.10、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,所以,即得,故選:D11、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和求導(dǎo)法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導(dǎo)數(shù)公式,考查導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題.12、D【解析】設(shè)雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設(shè)雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】以為坐標(biāo)原點,建立空間直角坐標(biāo)系,求得的坐標(biāo)之間的關(guān)系,以及坐標(biāo)的范圍,即可求得結(jié)果.【詳解】以D為原點,為x軸,為y軸,為z軸,建立空間直角坐標(biāo)系如下所示:設(shè),則,,∵,∴,解得,因為,所以c的最大值為,即點P到平面的距離d的最大值為.故答案為:.14、##0.8【解析】由排列組合知識求得所選3人中男女生都有方法數(shù)及總的選取方法數(shù)后可計算概率【詳解】從6名男生和4名女生中選出3人的方法數(shù)是,所選3人中男女生都有的方法數(shù)為,所以概率為故答案為:15、【解析】設(shè),則,將直線方程與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理即得.【詳解】由拋物線:可知則焦點坐標(biāo)為,∴過焦點且斜率為的直線方程為,化簡可得,設(shè),則,由可得,所以則故答案為:16、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點睛】本題考查利用余弦定理解三角形,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)正弦定理化邊為角,結(jié)合三角變換可求答案;(2)根據(jù)余弦定理先求,再用余弦定理求解.【小問1詳解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小問2詳解】設(shè),則,即,解得或(舍去),∴.∵,∴.18、(1)初中、高中年級所抽取人數(shù)分別為45、55(2)2.375小時,2.4小時(3)【解析】(1)依據(jù)分層抽樣的原則列方程即可解決;(2)依據(jù)頻率分布直方圖計算學(xué)生做作業(yè)時間的中位數(shù)和平均時長即可;(3)依據(jù)古典概型即可求得恰好1人來自初中年級,1人來自高中年級的概率.【小問1詳解】設(shè)初中、高中年級所抽取人數(shù)分別為x、y,由已知可得,解得;【小問2詳解】的頻率為,的頻率為,的頻率為因為,,所以中位數(shù)在區(qū)間上,設(shè)為x,則,解得,所以學(xué)生做作業(yè)時間的中位數(shù)為2.375小時;平均時長為小時.故估計學(xué)生做作業(yè)時間的中位數(shù)為2.375小時,平均時長為2.4小時【小問3詳解】2人來自初中年級,記為,,3人來自高中年級,記為,,,則從中任選2人,所有可能結(jié)果有:,,,,,,,,,共10種,其中恰好1人來自初中年級,1人來自高中年級有6種可能,所以恰好1人來自初中年級,1人來自高中年級的概率為19、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結(jié)合關(guān)系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當(dāng)平行于軸時,設(shè)過的直線為,聯(lián)立橢圓方程,令化簡得關(guān)于的二次方程,由韋達(dá)定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標(biāo)準(zhǔn)方程為:;【小問2詳解】如圖所示,當(dāng)平行于軸時,恰好平行于軸,,,;當(dāng)不平行于軸時,設(shè),設(shè)過點的直線為,聯(lián)立得,令得,化簡得,設(shè),則,又,故,即.綜上所述,.20、(1)橢圓,(2),證明見解析【解析】(1)結(jié)合橢圓第一定義直接判斷即可求出的軌跡為;(2)設(shè)直線的方程為,,,聯(lián)立橢圓方程,寫出韋達(dá)定理;由中點公式求出點,進(jìn)而得出直線方程,聯(lián)立橢圓方程求出,結(jié)合弦長公式可求,可轉(zhuǎn)化為,結(jié)合韋達(dá)定理可化簡,進(jìn)而得證.【小問1詳解】設(shè),,則因為,滿足,即動點表示以點,為左、右焦點,長軸長為4,焦距為的橢圓,其軌跡的方程為;【小問2詳解】可以判斷出,下面進(jìn)行證明:設(shè)直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點坐標(biāo)為,直線方程為,由方程組,得,,所以又所以.21、(1);(2).【解析】(1)根據(jù)給定的遞推公式結(jié)合“當(dāng)時,”探求相鄰兩項的關(guān)系計算作答.(2)由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論