西藏省重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
西藏省重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
西藏省重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
西藏省重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
西藏省重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

西藏省重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某中學(xué)為了解高三男生的體能情況,通過隨機抽樣,獲得了200名男生的100米體能測試成績(單位:秒),將數(shù)據(jù)按照,,…,分成9組,制成了如圖所示的頻率分布直方圖.規(guī)定成績低于13秒為優(yōu),成績高于14.8秒為不達(dá)標(biāo).由直方圖推斷,下列選項錯誤的是()A.直方圖中a的值為0.40B.由直方圖估計本校高三男生100米體能測試成績的眾數(shù)為13.75秒C.由直方圖估計本校高三男生100米體能測試成績?yōu)閮?yōu)的人數(shù)為54D.由直方圖估計本校高三男生100米體能測試成績?yōu)椴贿_(dá)標(biāo)的人數(shù)為182.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的短軸的最小值為()A. B.C. D.3.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.4.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.5.甲烷是一種有機化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個氫原子之間的距離(H-H鍵長)相等,碳原子到四個氫原子的距離(C-H鍵長)均相等,任意兩個H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個氫原子為頂點的四面體的體積為()A. B.C. D.6.已知直線和互相平行,則實數(shù)的取值為()A或3 B.C. D.1或7.如圖,在正方體中,()A. B.C. D.8.已知數(shù)列中,,當(dāng)時,,設(shè),則數(shù)列的通項公式為()A. B.C. D.9.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.10.已知x>0、y>0,且1,若恒成立,則實數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)11.已知圓的方程為,直線:恒過定點,若一條光線從點射出,經(jīng)直線上一點反射后到達(dá)圓上的一點,則的最小值是()A.3 B.4C.5 D.612.函數(shù)的部分圖像為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則其通項公式_______14.函數(shù)的圖象在點處的切線的方程是______.15.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______16.若拋物線上一點到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,已知,,且.(1)求角的大??;(2)若,面積為,試判斷的形狀,并說明理由.18.(12分)已知函數(shù)圖像在點處的切線方程為.(1)求實數(shù)、的值;(2)求函數(shù)在上的最值.19.(12分)已知函數(shù),其中a為正數(shù)(1)討論單調(diào)性;(2)求證:20.(12分)已知數(shù)列是遞增的等差數(shù)列,,若成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和,求.21.(12分)已知圓C的圓心在直線上,且經(jīng)過點和(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過點的直線l與圓C交于A,B兩點,且,求直線l的方程22.(10分)冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾?。衲瓿霈F(xiàn)的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.應(yīng)國務(wù)院要求,黑龍江某醫(yī)院選派醫(yī)生參加援鄂醫(yī)療,該院呼吸內(nèi)科有3名男醫(yī)生,2名女醫(yī)生,其中李亮(男)為科室主任;該院病毒感染科有2名男醫(yī)生,2名女醫(yī)生,其中張雅(女)為科室主任,現(xiàn)在院方?jīng)Q定從兩科室中共選4人參加援鄂醫(yī)療(最后結(jié)果用數(shù)字表達(dá))(1)若至多有1名主任參加,有多少種派法?(2)若呼吸內(nèi)科至少2名醫(yī)生參加,有多少種派法?(3)若至少有1名主任參加,且有女醫(yī)生參加,有多少種派法?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)頻率之和為求得,結(jié)合眾數(shù)、頻率等知識對選項進(jìn)行分析,從而確定正確答案.【詳解】,解得,A選項正確.眾數(shù)為,B選項正確.成績低于秒的頻率為,人數(shù)為,所以C選項正確.成績高于的頻率為,人數(shù)為人,D選項錯誤.故選:D2、B【解析】根據(jù)題意,點關(guān)于直線對稱點的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點關(guān)于直線的對稱點,則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.3、A【解析】根據(jù)二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.4、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進(jìn)行求解即可.【詳解】由題意不妨設(shè),,當(dāng)時,由,不妨設(shè),因為是等腰直角三角形,所以有,或舍去,故選:B5、A【解析】利用余弦定理求得,計算出正四面體的高,從而計算出正四面體的體積.【詳解】設(shè),則由余弦定理知:,解得,故該正四面體的棱長均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A6、B【解析】利用兩直線平行的等價條件求得實數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結(jié)論,可避免討論:已知,,則,7、B【解析】根據(jù)正方體的性質(zhì),結(jié)合向量加減法的幾何意義有,即可知所表示的向量.【詳解】∵,而,∴,故選:B8、A【解析】根據(jù)遞推關(guān)系式得到,進(jìn)而利用累加法可求得結(jié)果【詳解】數(shù)列中,,當(dāng)時,,,,,且,,故選:A9、D【解析】由在上恒成立,再轉(zhuǎn)化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當(dāng)時,,所以故選:D10、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時等號成立,∴要使恒成立,只需,故,∴.故選:B.11、B【解析】求得定點,然后得到關(guān)于直線對稱點為,然后可得,計算即可.【詳解】直線可化為,令解得所以點的坐標(biāo)為.設(shè)點關(guān)于直線的對稱點為,則由,解得,所以點坐標(biāo)為.由線段垂直平分線的性質(zhì)可知,,所以(當(dāng)且僅當(dāng),,,四點共線時等號成立),所以的最小值為4.故選:B.12、D【解析】先判斷奇偶性排除C,再利用排除B,求導(dǎo)判斷單調(diào)性可排除A.【詳解】因為,所以為偶函數(shù),排除C;因為,排除B;當(dāng)時,,,當(dāng)時,,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造法可得,由等比數(shù)列的定義寫出的通項公式,進(jìn)而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項為,則,∴.故答案為:.14、【解析】求導(dǎo),求得,,根據(jù)直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.15、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.16、【解析】先由拋物線的方程求出準(zhǔn)線的方程,然后根據(jù)點到準(zhǔn)線的距離可求,進(jìn)而可得拋物線的標(biāo)準(zhǔn)方程.【詳解】拋物線的準(zhǔn)線方程為,點到其準(zhǔn)線的距離為,由題意可得,解得,故拋物線的標(biāo)準(zhǔn)方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯(lián)立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應(yīng)用,考查方程思想與運算求解能力,屬于中檔題18、(1)a=3,b=-9.(2)最小值=-24,最大值=8.【解析】由曲線在的值以及切線斜率容易確定a與b的值;根據(jù)導(dǎo)數(shù)很容易確定函數(shù)單調(diào)區(qū)間以及極值點.【小問1詳解】,,,由于切線方程是,當(dāng)x=1時,y=-8,即,即=-8……①;又切線的斜率為-12,∴……②;聯(lián)立①②得.【小問2詳解】由(1)得:,;當(dāng)時,,導(dǎo)函數(shù)圖像如下:在時,單調(diào)遞增,時,單調(diào)遞減,時單調(diào)遞增;∴在x=-1有極大值,x=3有極小值;在區(qū)間內(nèi):在x=-1有最大值;在x=3有最小值.19、(1)答案見解析(2)證明見解析【解析】(1)求解函數(shù)的導(dǎo)函數(shù),并且求的兩個根,然后分類討論,和三種情況下對應(yīng)的單調(diào)性;(2)令,通過二次求導(dǎo)法,判斷函數(shù)的單調(diào)性與最小值,設(shè)的零點為,求出取值范圍,最后將轉(zhuǎn)化為的對勾函數(shù)并求解最小值,即可證明出不等式.【小問1詳解】函數(shù)的定義域為∵令得∵,∴,得或①當(dāng),即時,時,或;時,.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增②當(dāng),即時,時,或;時,.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增③當(dāng),即時,∴在上單調(diào)遞增綜上所述:當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增【小問2詳解】令,()∴,令∴,∴在上單調(diào)遞增又∵,,∴使得,即(*)∴當(dāng)時,,∴,∴單調(diào)遞減∴當(dāng)時,,∴,∴單調(diào)遞增∴,()由(*)式可知:,∴,∴∵,∴函數(shù)單調(diào)遞減∴,∴∴【點睛】求解本題的關(guān)鍵是利用二次求導(dǎo)法,通過虛設(shè)零點,求解原函數(shù)的單調(diào)性與最小值,并通過最小值的取值范圍證明不等式.20、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意列出方程組,求得的值,即可求解;(2)由(1)求得,結(jié)合“裂項法”即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,若成等比數(shù)列,可得,解得,所以數(shù)列的通項公式為.(2)由(1)可得,所以.【點睛】關(guān)于數(shù)列的裂項法求和的基本策略:1、基本步驟:裂項:觀察數(shù)列的通項,將通項拆成兩項之差的形式;累加:將數(shù)列裂項后的各項相加;消項:將中間可以消去的項相互抵消,將剩余的有限項相加,得到數(shù)列的前項和.2、消項的規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩第幾項,后邊就剩倒數(shù)第幾項.21、(1)(2)或【解析】(1)點和的中垂線經(jīng)過圓心,兩直線聯(lián)立方程得圓心坐標(biāo),再利用兩點間距離公式求解半徑.(2)已知弦長,求解直線方程,分類討論斜率是否存在.小問1詳解】點和的中點為,,所以中垂線的,利用點斜式得方程為,聯(lián)立方程得圓心坐標(biāo)為,所以圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)過點的直線l斜率不存在時,直線方程為,此時弦長,符合題意.當(dāng)過點的直線l斜率存在時,設(shè)直線方程為,化簡得,弦心距,所以,解得,所以直線方程為.綜上所述直線方程為或.22、(1)105種(2)105種(3)87種【解析】(1)至多有1名主任參加,包括兩種情況:一種是無主任參加,另一種是只有1名主任參加,利用分類計數(shù)原理可得結(jié)果;(2)呼吸內(nèi)科至少2名醫(yī)生

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論