福建省華安一中、長泰一中等四校2025屆高二數學第一學期期末監(jiān)測模擬試題含解析_第1頁
福建省華安一中、長泰一中等四校2025屆高二數學第一學期期末監(jiān)測模擬試題含解析_第2頁
福建省華安一中、長泰一中等四校2025屆高二數學第一學期期末監(jiān)測模擬試題含解析_第3頁
福建省華安一中、長泰一中等四校2025屆高二數學第一學期期末監(jiān)測模擬試題含解析_第4頁
福建省華安一中、長泰一中等四校2025屆高二數學第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省華安一中、長泰一中等四校2025屆高二數學第一學期期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則()A.1 B.2C.4 D.82.函數的圖象在點處的切線的傾斜角為()A. B.0C. D.13.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.44.下列直線中,與直線垂直的是()A. B.C. D.5.已知拋物線,則其焦點到準線的距離為()A. B.C.1 D.46.如圖,若斜邊長為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.87.若函數的導函數為偶函數,則的解析式可能是()A. B.C. D.8.已知是橢圓的左焦點,為橢圓上任意一點,點坐標為,則的最大值為()A. B.13C.3 D.59.()A.-2 B.0C.2 D.310.已知函數對于任意的滿足,其中是函數的導函數,則下列各式正確的是()A. B.C. D.11.設函數在R上存在導數,對任意的有,若,則k的取值范圍是()A. B.C. D.12.不等式的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線上任意一點,為拋物線的焦點,為平面內一定點,則的最小值為__________.14.設等差數列{an}的前n項和為Sn,且S2020>0,S2021<0,則當n=_____________時,Sn最大.15.設,復數,,若是純虛數,則的虛部為_________.16.已知斜率為1的直線經過橢圓的左焦點,且與橢圓交于,兩點,若橢圓上存在點,使得的重心恰好是坐標原點,則橢圓的離心率______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某城市地鐵公司為鼓勵人們綠色出行,決定按照乘客經過地鐵站的數量實施分段優(yōu)惠政策,不超過12站的地鐵票價如下表:乘坐站數票價(元)246現有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過12站,且他們各自在每個站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費8元,則甲比乙先下地鐵的方案共有多少種?18.(12分)在等差數列中,設前項和為,已知,.(1)求的通項公式;(2)令,求數列的前項和.19.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍20.(12分)設曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當,求a的取值范圍.21.(12分)已知兩動圓:和:,把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,取曲線上的相異兩點、滿足:且點與點均不重合.(1)求曲線的方程;(2)證明直線恒經過一定點,并求此定點的坐標;22.(10分)已知數列中,,且滿足(1)求證數列是等差數列,并求數列的通項公式;(2)求數列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意結合導數的運算可得,再由導數的概念即可得解.【詳解】由題意,所以,所以.故選:D.2、A【解析】求出導函數,計算得切線斜率,由斜率求得傾斜角【詳解】,設傾斜角為,則,,故選:A3、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉化研究,而角平分線性質可轉化到焦半徑問題,兩者切入點為橢圓定義.4、C【解析】,,若,則,項,符合條件,故選5、B【解析】化簡拋物線的方程為,求得,即為焦點到準線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準線的距離是故選:B6、C【解析】由斜二測還原圖形計算即可求得結果.【詳解】在斜二測直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C7、C【解析】根據題意,求出每個函數的導函數,進而判斷答案.【詳解】對A,,為奇函數;對B,,為奇函數;對C,,為偶函數;對D,,既不是奇函數也不是偶函數.故選:C.8、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B9、C【解析】根據定積分公式直接計算即可求得結果【詳解】由故選:C10、C【解析】令,結合題意可得,利用導數討論函數的單調性,進而得出,變形即可得出結果.【詳解】令,則,又,所以,令,令,所以函數在上單調遞減,在單調遞增,所以,即,則.故選:C11、C【解析】構造函數,求導后利用單調性,對題干條件變形后得到不等關系,求出答案.【詳解】令,則恒成立,故單調遞增,變形為,即,從而,解得:,故k的取值范圍是故選:C12、A【解析】根據一元二次不等式的解法進行求解即可.【詳解】,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】利用拋物線的定義,再結合圖形即求.【詳解】由題可得拋物線的準線為,設點在準線上的射影為,則根據拋物線的定義可知,∴要求取得最小值,即求取得最小,當三點共線時最小,為.故答案為:3.14、1010【解析】先由S2020>0,S2021<0,判斷出,,即可得到答案.【詳解】等差數列{an}的前n項和為,所以,因為1+2020=1010+1011,所以,所以.,所以,所以當n=1010時,Sn最大.故答案為:1010.15、【解析】由復數除法的運算法則求出,又是純虛數,可求出,從而根據共軛復數及虛部的定義即可求解.【詳解】解:因為復數,,所以,又是純虛數,所以,所以,所以所以的虛部為,故答案:.16、【解析】設點,,坐標分別為,則根據題意有,分別將點,,的坐標代入橢圓方程得,然后聯立直線與橢圓方程,利用韋達定理得到和的值,代入得到關于的齊次式,然后解出離心率.【詳解】設,,坐標分別為,因為的重心恰好是坐標原點,則,則,代入橢圓方程可得,其中,所以……①因為直線的斜率為,且過左焦點,則的方程為:,聯立方程消去可得:,所以,……②所以……③,將②③代入①得,從而.故答案為:【點睛】本題考查橢圓的離心率求解問題,難度較大.解答時,注意,,三點坐標之間的關系,注意韋達定理在解題中的運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)24(種)(2)21(種)【解析】(1)先根據共付費6元得一人付費2元一人付費4元,再確定人與乘坐站數,即可得結果;(2)先根據共付費8元得一人付費2元一人付費6元或兩人都付費4元,再求甲比乙先下地鐵的方案數.【小問1詳解】由已知可得:甲、乙兩人共付費6元,則甲、乙一人付費2元一人付費4元,又付費2元的乘坐站數有1,2,3三種選擇,付費4元的乘坐站數有4,5,6,7四種選,所以甲、乙下地鐵的方案共有(3×4)×2=24(種).【小問2詳解】甲、乙兩人共付費8元,則甲、乙一人付費2元一人付費6元或兩人都付費4元;當甲付費2元,乙付費6元時,甲乘坐站數有1,2,3三種選擇,乙乘坐站數有8,9,10,11,12五種選擇,此時,共有35=15(種)方案;當兩人都付費4元時,若甲在第4站下地鐵,則乙可在第5,6,7站下地鐵,有3種方案;若甲在第5站下地鐵,則乙可在第6,7站下地鐵,有2種方案;若甲在第6站下地鐵,則乙可在第7站下地鐵,有1種方案;綜上,甲比乙先下地鐵的方案共有(種).18、(1)(2)【解析】(1)根據等差數列的前項和公式,即可求解公差,再計算通項公式;(2)根據(1)的結果,利用裂項相消法求和.【小問1詳解】設的公差為,由已知得,解得,所以.【小問2詳解】所以.19、(1)(2)【解析】(1)根據橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯立,整理得根與系數的關系,利用直線方程求出點S、T的坐標,再根據確定的表達式,將根與系數的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當直線l的傾斜角為銳角時,設,設直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍是20、(1)(2)證明見解析(3)【解析】(1)求導,根據導數的幾何意義,令x=1處的切線的斜率等1,結合,即可求得a和b的值;(2)利用(1)的結論,構造函數,求求導數,判斷單調性,求出最小值即可證明;(3)根據條件構造函數,求出其導數,分類討論導數的值的情況,根據單調性,判斷函數的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當時,,單調遞減,當時,,單調遞增,所以當時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當,即,(),設,(),則,當時,由得,此時,此時在時單調遞增,,適合題意;當時,,此時在時單調遞增,,適合題意;當時,,此時,此時在時單調遞增,,適合題意;當時,,此時在內,,在內,,故,顯然時,,不滿足當恒成立,綜上述:.21、(1);(2)證明見解析,.【解析】(1)設兩動圓的公共點為,則有,運用橢圓的定義,即可得到,,,進而得到的軌跡方程;(2),設,,,,設出直線方程,聯立方程組,利用韋達定理法及向量的數量積的坐標表示,即可得到定點.【小問1詳解】設兩動圓的公共點為,則有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論