2025屆安徽省安慶七中高一上數(shù)學(xué)期末考試試題含解析_第1頁
2025屆安徽省安慶七中高一上數(shù)學(xué)期末考試試題含解析_第2頁
2025屆安徽省安慶七中高一上數(shù)學(xué)期末考試試題含解析_第3頁
2025屆安徽省安慶七中高一上數(shù)學(xué)期末考試試題含解析_第4頁
2025屆安徽省安慶七中高一上數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆安徽省安慶七中高一上數(shù)學(xué)期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.當(dāng)點在圓上變動時,它與定點的連線的中點的軌跡方程是()A. B.C. D.2.函數(shù)的零點一定位于區(qū)間()A. B.C. D.3.已知,則“”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件4.已知直線與平行,則實數(shù)的取值是A.-1或2 B.0或1C.-1 D.25.設(shè)當(dāng)時,函數(shù)取得最大值,則()A. B.C. D.6.函數(shù)的圖像的大致形狀是()A. B.C. D.7.空間直角坐標(biāo)系中,點關(guān)于平面的對稱點為點,關(guān)于原點的對稱點為點,則間的距離為A. B.C. D.8.某學(xué)校大門口有一座鐘樓,每到夜晚燈光亮起都是一道靚麗的風(fēng)景,有一天因停電導(dǎo)致鐘表慢10分鐘,則將鐘表撥快到準(zhǔn)確時間分針?biāo)D(zhuǎn)過的弧度數(shù)是()A. B.C. D.9.已知實數(shù)a、b,滿足,,則關(guān)于a、b下列判斷正確的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a10.已知,其中a,b為常數(shù),若,則()A. B.C.10 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=AB,則下列結(jié)論正確的是_____.(填序號)①PB⊥AD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sin∠PDA12.函數(shù)的定義域為______13.若函數(shù)滿足,且當(dāng)時,則______14.函數(shù)=(其中且)的圖象恒過定點,且點在冪函數(shù)的圖象上,則=______.15.函數(shù)的最大值與最小值之和等于______16.圓的圓心坐標(biāo)是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.人類已進入大數(shù)據(jù)時代.目前數(shù)據(jù)量已經(jīng)從級別越升到,,乃至級別.某數(shù)據(jù)公司根據(jù)以往數(shù)據(jù),整理得到如下表格:時間2008年2009年2010年2011年2012年間隔年份(單位:年)01234全球數(shù)據(jù)量(單位:)0.50.751.1251.68752.53125根據(jù)上述數(shù)據(jù)信息,經(jīng)分析后發(fā)現(xiàn)函數(shù)模型能較好地描述2008年全球產(chǎn)生的數(shù)據(jù)量(單位:)與間隔年份(單位:年)的關(guān)系.(1)求函數(shù)的解析式;(2)請估計2021年全球產(chǎn)生的數(shù)據(jù)量是2011年的多少倍(結(jié)果保留3位小數(shù))?參考數(shù)據(jù):,,,,,.18.已知函數(shù)f(x)=(1)求f(x)的最小正周期;(2)當(dāng)x∈[-π6,19.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的一個上界.已知函數(shù),.(1)若函數(shù)為奇函數(shù),求實數(shù)的值;(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;(3)若函數(shù)在上是以為上界有界函數(shù),求實數(shù)的取值范圍.20.已知函數(shù)是定義在上的奇函數(shù),且.(1)確定函數(shù)的解析式,判斷并證明函數(shù)在上的單調(diào)性;(2)若存在實數(shù),使得不等式成立,求正實數(shù)的取值范圍.21.如圖,已知,分別是正方體的棱,的中點.求證:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】設(shè)中點的坐標(biāo)為,則,利用在已知的圓上可得的中點的軌跡方程.【詳解】設(shè)中點的坐標(biāo)為,則,因為點在圓上,故,整理得到.故選:D.【點睛】求動點的軌跡方程,一般有直接法和間接法,(1)直接法,就是設(shè)出動點的坐標(biāo),已知條件可用動點的坐標(biāo)表示,化簡后可得動點的軌跡方程,化簡過程中注意變量的范圍要求.(2)間接法,有如下幾種方法:①幾何法:看動點是否滿足一些幾何性質(zhì),如圓錐曲線的定義等;②動點轉(zhuǎn)移:設(shè)出動點的坐標(biāo),其余的點可以前者來表示,代入后者所在的曲線方程即可得到欲求的動點軌跡方程;③參數(shù)法:動點的橫縱坐標(biāo)都可以用某一個參數(shù)來表示,消去該參數(shù)即可動點的軌跡方程.2、C【解析】根據(jù)零點存在性定理,若在區(qū)間有零點,則,逐一檢驗選項,即可得答案.【詳解】由題意得為連續(xù)函數(shù),且在單調(diào)遞增,,,,根據(jù)零點存在性定理,,所以零點一定位于區(qū)間.故選:C3、A【解析】“a>1”?“”,“”?“a>1或a<0”,由此能求出結(jié)果【詳解】a∈R,則“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要條件故選A【點睛】充分、必要條件的三種判斷方法

定義法:直接判斷“若則”、“若則”的真假.并注意和圖示相結(jié)合,例如“?”為真,則是的充分條件

等價法:利用?與非?非,?與非?非,?與非?非的等價關(guān)系,對于條件或結(jié)論是否定式的命題,一般運用等價法

集合法:若?,則是的充分條件或是的必要條件;若=,則是的充要條件4、C【解析】因為兩直線的斜率都存在,由與平行得,當(dāng)時,兩直線重合,,故選C.5、D【解析】利用輔助角公式、兩角差的正弦公式化簡解析式:,并求出和,由條件和正弦函數(shù)的最值列出方程,求出的表達式,由誘導(dǎo)公式求出的值【詳解】解:函數(shù)(其中,又時取得最大值,,,即,,,故選:6、D【解析】化簡函數(shù)解析式,利用指數(shù)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,即可得出答案.【詳解】根據(jù),是減函數(shù),是增函數(shù).在上單調(diào)遞減,在上單調(diào)遞增故選:D.【點睛】本題主要考查了根據(jù)函數(shù)表達式求函數(shù)圖象,解題關(guān)鍵是掌握指數(shù)函數(shù)圖象的特征,考查了分析能力和計算能力,屬于中檔題.7、C【解析】分析:求出點關(guān)于平面的對稱點,關(guān)于原點的對稱點,直接利用空間中兩點間的距離公式,即可求解結(jié)果.詳解:在空間直角坐標(biāo)系中,點關(guān)于平面的對稱點,關(guān)于原點的對稱點,則間的距離為,故選C.點睛:本題主要考查了空間直角坐標(biāo)系中點的表示,以及空間中兩點間的距離的計算,著重考查了推理與計算能力,屬于基礎(chǔ)題.8、A【解析】由題可得分針需要順時針方向旋轉(zhuǎn).【詳解】分針需要順時針方向旋轉(zhuǎn),即弧度數(shù)為.故選:A.9、D【解析】先根據(jù)判斷a接近2,進一步對a進行放縮,,進而通過對數(shù)運算性質(zhì)和基本不等式可以判斷a>2;根據(jù)b的結(jié)構(gòu),構(gòu)造函數(shù),得出函數(shù)的單調(diào)性和零點,進而得到a,b的大小關(guān)系,最后再判斷b和2的大小關(guān)系,最終得到答案.【詳解】.構(gòu)造函數(shù):,易知函數(shù)是R上的減函數(shù),且,由,可知:,又,∴,則a>b.又∵,∴a>b>2故選:D.【點睛】對數(shù)函數(shù)式比較大小通常借助中間量,除了0和1之外,其它的中間量需要根據(jù)題目進行分析,中間會用到指對數(shù)的運算性質(zhì)和放縮法;另外,構(gòu)造函數(shù)利用函數(shù)的單調(diào)性比較大小是比較常用的一種方法,需要我們對式子的結(jié)構(gòu)進行仔細分析,平常注意歸納總結(jié).10、A【解析】計算出,結(jié)合可求得的值.【詳解】因為,所以,若,則.故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、④【解析】由題意,分別根據(jù)線面位置關(guān)系的判定定理和性質(zhì)定理,逐項判定,即可得到答案.【詳解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD與AB成60°,∴①不成立,過A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正確;BC與AE是相交直線,所以BC一定不與平面PAE平行,所以③不正確;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正確;故答案為:④【點睛】本題考查線面位置關(guān)系判定與證明,考查線線角,屬于基礎(chǔ)題.熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.12、【解析】由對數(shù)的真數(shù)大于零、二次根式的被開方數(shù)非負,分式的分母不為零,列不等式組可求得答案【詳解】由題意得,解得,所以函數(shù)的定義域為,故答案為:13、1009【解析】推導(dǎo)出,當(dāng)時,從而當(dāng)時,,,由此能求出的值【詳解】∵函數(shù)滿足,∴,∵當(dāng)時,∴當(dāng)時,,,∴故答案為1009【點睛】本題主要考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題14、9【解析】由題意知,當(dāng)時,.即函數(shù)=的圖象恒過定點.而在冪函數(shù)的圖象上,所以,解得,即,所以=9.15、0【解析】先判斷函數(shù)為奇函數(shù),則最大值與最小值互為相反數(shù)【詳解】解:根據(jù)題意,設(shè)函數(shù)的最大值為M,最小值為N,又由,則函數(shù)為奇函數(shù),則有,則有;故答案為0【點睛】本題考查函數(shù)奇偶性,利用奇函數(shù)的性質(zhì)求解是解題關(guān)鍵16、【解析】根據(jù)圓的標(biāo)準(zhǔn)方程,即可求得圓心坐標(biāo).【詳解】因為圓所以圓心坐標(biāo)為故答案為:【點睛】本題考查了圓的標(biāo)準(zhǔn)方程與圓心的關(guān)系,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意選取點代入函數(shù)解析式,取出參數(shù)即可.(2)先求出2021年全球產(chǎn)生的數(shù)據(jù)量,然后結(jié)合條件可得答案.【小問1詳解】由題意點在函數(shù)模型的圖像上則,解得所以【小問2詳解】2021年時,間隔年份為13,則2021年全球產(chǎn)生的數(shù)據(jù)量是2021年全球產(chǎn)生的數(shù)據(jù)量是2011年的倍數(shù)為:18、(1)π(2)x∈-π6,π3時,f(x)【解析】(1)對f(x)化簡后得到fx=sin2x-π6【小問1詳解】f(x)=所以f(x)的最小正周期為2【小問2詳解】當(dāng)x∈-π故當(dāng)-π2?2x-π6當(dāng)π2?2x-π6?當(dāng)2x-π6∈所以-32?f(x)?119、(1);(2);(3).【解析】(1)由奇函數(shù)的定義,代入即可得出結(jié)果.(2)由復(fù)合函數(shù)的單調(diào)性,可得在區(qū)間上單調(diào)遞增,進而求出值域,即可得出結(jié)果.(3)由題意可得在上恒成立,即在上恒成立,利用函數(shù)單調(diào)性的定義證明單調(diào)性,再求出值域,即可求出結(jié)果.【詳解】(1)因函數(shù)為奇函數(shù),所以,即,即,得,而當(dāng)時不合題意,故(2)由(1)得:,而,易知在區(qū)間上單調(diào)遞增,所以函數(shù)在區(qū)間上單調(diào)遞增,所以函數(shù)在區(qū)間上的值域為,所以,故函數(shù)在區(qū)間上的所有上界構(gòu)成集合為.(3)由題意知,在上恒成立.,.在上恒成立.設(shè),,,由得設(shè),,所以在上遞減,在上遞增,在上的最大值為,在上的最小值為,所以實數(shù)的取值范圍為.20、(1),函數(shù)在上單調(diào)遞減,證明見解析.(2)【解析】(1)根據(jù),得到函數(shù)解析式,設(shè),計算,證明函數(shù)的單調(diào)性.(2)根據(jù)函數(shù)的奇偶性和單調(diào)性得到,設(shè),求函數(shù)的最小值得到答案.【小問1詳解】函數(shù)是定義在上的奇函數(shù),則,,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論