2025屆安徽省合肥市壽春中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試模擬試題含解析_第1頁(yè)
2025屆安徽省合肥市壽春中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試模擬試題含解析_第2頁(yè)
2025屆安徽省合肥市壽春中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試模擬試題含解析_第3頁(yè)
2025屆安徽省合肥市壽春中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試模擬試題含解析_第4頁(yè)
2025屆安徽省合肥市壽春中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆安徽省合肥市壽春中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“中國(guó)剩余定理”又稱“孫子定理”.1852年英國(guó)來(lái)華傳教士偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將2至2021這2020個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為()A. B.C. D.2.如圖,某圓錐的軸截面是等邊三角形,點(diǎn)是底面圓周上的一點(diǎn),且,點(diǎn)是的中點(diǎn),則異面直線與所成角的余弦值是()A. B.C. D.3.已知向量,且,則()A. B.C. D.4.直線在y軸上的截距是A. B.C. D.5.設(shè)數(shù)列的前項(xiàng)和為,當(dāng)時(shí),,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.6.已知是拋物線的焦點(diǎn),為拋物線上的動(dòng)點(diǎn),且的坐標(biāo)為,則的最小值是A. B.C. D.7.函數(shù)圖象的一個(gè)對(duì)稱中心為()A. B.C. D.8.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條9.如圖,四面體-,是底面△的重心,,則()A B.C. D.10.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.11.在遞增等比數(shù)列中,為其前n項(xiàng)和.已知,,且,則數(shù)列的公比為()A.3 B.4C.5 D.612.某研究所計(jì)劃建設(shè)n個(gè)實(shí)驗(yàn)室,從第1實(shí)驗(yàn)室到第n實(shí)驗(yàn)室的建設(shè)費(fèi)用依次構(gòu)成等差數(shù)列,已知第7實(shí)驗(yàn)室比第2實(shí)驗(yàn)室的建設(shè)費(fèi)用多15萬(wàn)元,第3實(shí)驗(yàn)室和第6實(shí)驗(yàn)室的建設(shè)費(fèi)用共為61萬(wàn)元.現(xiàn)在總共有建設(shè)費(fèi)用438萬(wàn)元,則該研究所最多可以建設(shè)的實(shí)驗(yàn)室個(gè)數(shù)是()A.10 B.11C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)物體的運(yùn)動(dòng)方程為其中位移的單位是米,時(shí)間的單位是秒,那么物體在秒末的瞬時(shí)速度是__________米/秒14.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時(shí)期的數(shù)學(xué)三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動(dòng)點(diǎn)P到兩定點(diǎn)A,B的距離之比滿足(且,t為常數(shù)),則點(diǎn)的軌跡為圓.已知在平面直角坐標(biāo)系中,,,動(dòng)點(diǎn)P滿足,則P點(diǎn)的軌跡為圓,該圓方程為_(kāi)________;過(guò)點(diǎn)的直線交圓于兩點(diǎn),且,則_________15.已知橢圓的離心率為.(1)證明:;(2)若點(diǎn)在橢圓的內(nèi)部,過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),為線段的中點(diǎn),且.①求直線的方程;②求橢圓的標(biāo)準(zhǔn)方程.16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知是公差不為0的等差數(shù)列,其前項(xiàng)和為,,且,,成等比數(shù)列.(1)求和;(2)若,數(shù)列的前項(xiàng)和為,且對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知圓C的圓心在x軸上,且經(jīng)過(guò)點(diǎn),.(1)求圓C的標(biāo)準(zhǔn)方程;(2)過(guò)斜率為的直線與圓C相交于M,N,兩點(diǎn),求弦MN的長(zhǎng).19.(12分)已知拋物線C:經(jīng)過(guò)點(diǎn).(1)求拋物線C的方程及其準(zhǔn)線方程;(2)經(jīng)過(guò)拋物線C的焦點(diǎn)F的直線l與拋物線交于兩點(diǎn)M,N,且與拋物線的準(zhǔn)線交于點(diǎn)Q.若,求直線l的方程.20.(12分)如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(diǎn)(1)求證:平面平面;(2)求點(diǎn)到平面的距離21.(12分)設(shè)命題,,命題,.若p、q都為真命題,求實(shí)數(shù)m的取值范圍.22.(10分)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,已知,(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿足,數(shù)列的前項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由題設(shè)且,應(yīng)用不等式求的范圍,即可確定項(xiàng)數(shù).【詳解】由題設(shè),且,所以,可得且.所以此數(shù)列的項(xiàng)數(shù)為.故選:C2、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計(jì)算即可.【詳解】以過(guò)點(diǎn)且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.3、A【解析】利用空間向量共線的坐標(biāo)表示即可求解.【詳解】由題意可得,解得,所以.故選:A4、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.5、A【解析】根據(jù)等差中項(xiàng)寫出式子,由遞推式及求和公式寫出和,進(jìn)而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項(xiàng)求和是首項(xiàng)為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因?yàn)?,,,即,所以,則,當(dāng)且僅當(dāng)時(shí),,符合題意,故的最大值為.故選:A.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應(yīng)用,考查分析問(wèn)題能力,屬于難題.6、C【解析】由題意可得,拋物線的焦點(diǎn),準(zhǔn)線方程為過(guò)點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角∴當(dāng)最小時(shí),最小,則當(dāng)和拋物線相切時(shí),最小設(shè)切點(diǎn),由的導(dǎo)數(shù)為,則的斜率為.∴,則.∴,∴故選C點(diǎn)睛:本題主要考查拋物線的定義和幾何性質(zhì),與焦點(diǎn)、準(zhǔn)線有關(guān)的問(wèn)題一般情況下都與拋物線的定義有關(guān),解決這類問(wèn)題一定要注意點(diǎn)到焦點(diǎn)的距離與點(diǎn)到準(zhǔn)線的距離的轉(zhuǎn)化,這樣可利用三角形相似,直角三角形中的銳角三角函數(shù)或是平行線段比例關(guān)系可求得距離弦長(zhǎng)以及相關(guān)的最值等問(wèn)題.7、D【解析】要求函數(shù)圖象的一個(gè)對(duì)稱中心的坐標(biāo),關(guān)鍵是求函數(shù)時(shí)的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時(shí)可求出,然后對(duì)進(jìn)行取值,進(jìn)而結(jié)合選項(xiàng)即可得到答案.【詳解】解:令,則解得,即,圖象的對(duì)稱中心為,令,即可得到圖象的一個(gè)對(duì)稱中心為故選:D【點(diǎn)睛】本題考查三角函數(shù)的對(duì)稱中心,正弦函數(shù)的對(duì)稱中心為,余弦函數(shù)的對(duì)稱中心為.8、D【解析】求得圓心坐標(biāo)分別為,半徑分別為,根據(jù)圓圓的位置關(guān)系的判定方法,得出兩圓的位置關(guān)系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標(biāo)分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.9、B【解析】根據(jù)空間向量的加減運(yùn)算推出,進(jìn)而得出結(jié)果.【詳解】因?yàn)?,所以,故選:B10、B【解析】直接利用空間向量基本定理求解即可【詳解】因?yàn)樵谄叫辛骟w中,,,,所以,故選:B11、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)可求出、,然后結(jié)合等比數(shù)列的求和公式求解即可.【詳解】解:由題意得:是遞增等比數(shù)列又,,故故選:B12、C【解析】根據(jù)等差數(shù)列通項(xiàng)公式,列出方程組,求出的值,進(jìn)而求出令根據(jù)題意令,即可求解.【詳解】設(shè)第n實(shí)驗(yàn)室的建設(shè)費(fèi)用為萬(wàn)元,其中,則為等差數(shù)列,設(shè)公差為d,則由題意可得,解得,則.令,即,解得,又,所以,,所以最多可以建設(shè)12個(gè)實(shí)驗(yàn)室.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】,14、①.②.【解析】設(shè),根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設(shè),則,整理得到,即.因?yàn)?,故為的中點(diǎn),過(guò)圓心作的垂線,垂足為,則為的中點(diǎn),則,故,解得,故答案為:,.15、(1)證明見(jiàn)解析;(2)①;②.【解析】(1)由可證得結(jié)論成立;(2)①設(shè)點(diǎn)、,利用點(diǎn)差法可求得直線的斜率,利用點(diǎn)斜式可得出所求直線的方程;②將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得出關(guān)于的等式,可求出的值,即可得出橢圓的方程.【詳解】(1),,因此,;(2)①由(1)知,橢圓的方程為,即,當(dāng)在橢圓的內(nèi)部時(shí),,可得.設(shè)點(diǎn)、,則,所以,,由已知可得,兩式作差得,所以,所以,直線方程為,即.所以,直線的方程為;②聯(lián)立,消去可得.,由韋達(dá)定理可得,,又,而,,,解得合乎題意,故,因此,橢圓的方程為.16、77【解析】依題意利用等差中項(xiàng)求得,進(jìn)而求得.【詳解】依題意可得,則,故故答案為:77.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】(1)求出,即得數(shù)列的和;(2)由題得,再利用分組求和求出,得到,令,判斷函數(shù)的單調(diào)性得解.【詳解】(1)設(shè)數(shù)列的公差為,由已知得,,即,整理得,又,,;(2)由題意:,,,令,則,即對(duì)任意的恒成立,是單調(diào)遞增數(shù)列,,只需,所以.【點(diǎn)睛】方法點(diǎn)睛:求數(shù)列的最值,常用數(shù)列的單調(diào)性求解,求數(shù)列的單調(diào)性,一般利用定義法作差或作商判斷.18、(1)(2)【解析】(1)由圓的性質(zhì)可得圓心在線段的垂直平分線上,由題意求出的垂直平分線方程,從而得出圓心坐標(biāo),再求出半徑,得到答案.(2)由題意先求出滿足條件的直線方程,求出圓心到直線的距離,由垂經(jīng)定理可得圓的弦長(zhǎng).【小問(wèn)1詳解】由題意設(shè)圓C的標(biāo)準(zhǔn)方程為設(shè)的中點(diǎn)為,則,由圓的性質(zhì)可得則,又,所以則直線的方程為,即則圓C的圓心在直線上,即,故所以圓心,半徑所以圓C的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】過(guò)斜率為的直線方程為:圓心到該直線的距離為所以19、(1)拋物線C的方程為,準(zhǔn)線方程為(2)或.【解析】(1)將點(diǎn)代入拋物線求出即可得出拋物線方程和準(zhǔn)線方程;(2)設(shè)出直線方程,與拋物線聯(lián)立,表示出弦長(zhǎng)和即可求出.【小問(wèn)1詳解】將代入可得,解得,所以拋物線C的方程為,準(zhǔn)線方程為;【小問(wèn)2詳解】由題得,設(shè)直線方程為,,設(shè),聯(lián)立方程,可得,則,所以,因?yàn)橹本€與準(zhǔn)線交于點(diǎn)Q,則,則,因?yàn)?,所以,解得,所以直線l的方程為或.20、(1)證明見(jiàn)解析(2)【解析】(1)設(shè)與交點(diǎn)為,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),進(jìn)而根據(jù)證明,再結(jié)合底面得,進(jìn)而證明平面即可證明結(jié)論;(2)由得點(diǎn)到平面的距離等于點(diǎn)到平面的距離的,進(jìn)而過(guò)作,垂足為,結(jié)合(1)得點(diǎn)到平面的距離等于,再在中根據(jù)等面積法求解即可.【小問(wèn)1詳解】證明:設(shè)與交點(diǎn)為,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),因?yàn)樗睦忮F的底面為直角梯形,,所以,所以,因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)樗?,所以,所以,所以,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以又因?yàn)榈酌?,所以,因?yàn)?,所以平面,因?yàn)槠矫?,所以平面平面【小?wèn)2詳解】解:由于,所以,點(diǎn)到平面的距離等于點(diǎn)到平面的距離的,因?yàn)槠矫嫫矫?,平面平面故過(guò)作,垂足為,所以,平面,所以點(diǎn)到平面的距離等于在中,,所以,點(diǎn)到平面的距離等于.21、【解析】先求出命題為真時(shí),的取值范圍,再取交集可得答案.【詳解】若命題,為真命題,則,解得;若命題,為真命題,則命題,為假命題,即方程無(wú)實(shí)數(shù)根,因此,,解得.又p、q都為真命題,所以實(shí)數(shù)m的取值范圍是.【點(diǎn)睛】本題考查全稱命題與特

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論