![2025屆遼寧省大連市一0三中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view12/M02/25/2F/wKhkGWcafu2AXqDPAAHjbVHaMYk250.jpg)
![2025屆遼寧省大連市一0三中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view12/M02/25/2F/wKhkGWcafu2AXqDPAAHjbVHaMYk2502.jpg)
![2025屆遼寧省大連市一0三中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view12/M02/25/2F/wKhkGWcafu2AXqDPAAHjbVHaMYk2503.jpg)
![2025屆遼寧省大連市一0三中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view12/M02/25/2F/wKhkGWcafu2AXqDPAAHjbVHaMYk2504.jpg)
![2025屆遼寧省大連市一0三中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view12/M02/25/2F/wKhkGWcafu2AXqDPAAHjbVHaMYk2505.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆遼寧省大連市一0三中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知拋物線:的焦點(diǎn)為,為上一點(diǎn)且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點(diǎn),且,,三點(diǎn)共線,則()A.2 B.4C.6 D.83.已知等差數(shù)列的前n項(xiàng)和為,且,,則為()A. B.C. D.4.已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P在拋物線上,直線PF交x軸于Q點(diǎn),且,則點(diǎn)P到準(zhǔn)線l的距離為()A.4 B.5C.6 D.75.若關(guān)于一元二次不等式的解集為,則實(shí)數(shù)的取值范圍是()A. B.C. D.6.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.7.已知等比數(shù)列滿足,,則()A. B.C. D.8.《九章算數(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積為3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為()A.1升 B.升C.升 D.升9.在正方體中,P,Q兩點(diǎn)分別從點(diǎn)B和點(diǎn)出發(fā),以相同的速度在棱BA和上運(yùn)動至點(diǎn)A和點(diǎn),在運(yùn)動過程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.10.已知橢圓上一點(diǎn)到左焦點(diǎn)的距離為,是的中點(diǎn),則()A.1 B.2C.3 D.411.命題“”的否定是()A. B.C. D.12.計算復(fù)數(shù):()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.沈陽市某高中有高一學(xué)生600人,高二學(xué)生500人,高三學(xué)生550人,現(xiàn)對學(xué)生關(guān)于消防安全知識了解情況進(jìn)行分層抽樣調(diào)查,若抽取了一個容量為n的樣本,其中高三學(xué)生有11人,則n的值等于________.14.等差數(shù)列的公差,是其前n項(xiàng)和,給出下列命題:若,且,則和都是中的最大項(xiàng);給定n,對于一些,都有;存在使和同號;.其中正確命題的序號為___________.15.若函數(shù)恰有兩個極值點(diǎn),則k的取值范圍是______16.已知數(shù)列是等差數(shù)列,,公差,為其前n項(xiàng)和,滿足,則當(dāng)取得最大值時,______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,側(cè)面是邊長為4的正三角形,且與底面垂直,底面是菱形,且,為的中點(diǎn)(1)求證:;(2)求點(diǎn)到平面的距離18.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值19.(12分)已知與定點(diǎn),的距離比為的點(diǎn)P的軌跡為曲線C,過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn).(1)求曲線C的軌跡方程;(2)若,求.20.(12分)已知點(diǎn)A(1,2)在拋物線C∶上,過點(diǎn)A作兩條直線分別交拋物線于點(diǎn)D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過點(diǎn)P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.21.(12分)橢圓的左、右焦點(diǎn)分別為,短軸的一個端點(diǎn)到的距離為,且橢圓過點(diǎn)過且不與兩坐標(biāo)軸平行的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱.(1)求橢圓的方程(2)當(dāng)直線的斜率為1時,求的面積;(3)若點(diǎn),求證:三點(diǎn)共線.22.(10分)已知橢圓上的點(diǎn)到焦點(diǎn)的最大距離為3,離心率為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓交于不同兩點(diǎn),與軸交于點(diǎn),且滿足,若,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)充分條件和必要條件的概念即可判斷.【詳解】∵,∴“”是“”的必要不充分條件.故選:B.2、B【解析】根據(jù),,三點(diǎn)共線,結(jié)合點(diǎn)到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點(diǎn)共線,∴是圓的直徑,∴,軸,又為的中點(diǎn),且點(diǎn)到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.3、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.4、C【解析】根據(jù)題干條件得到相似,進(jìn)而得到,求出點(diǎn)P到準(zhǔn)線l的距離.【詳解】由題意得:,準(zhǔn)線方程為,因?yàn)?,所以,故點(diǎn)P到準(zhǔn)線l的距離為.故選:C5、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實(shí)數(shù)的取值范圍是.故選:B6、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A7、D【解析】由已知條件求出公比的平方,然后利用即可求解.【詳解】解:設(shè)等比數(shù)列的公比為,因?yàn)榈缺葦?shù)列滿足,,所以,所以,故選:D.8、B【解析】設(shè)出竹子自上而下各節(jié)的容積且為等差數(shù)列,根據(jù)上面4節(jié)的容積共3升,下面3節(jié)的容積共4升列出關(guān)于首項(xiàng)和公差的方程,聯(lián)立即可求出首項(xiàng)和公差,根據(jù)求出的首項(xiàng)和公差,利用等差數(shù)列的通項(xiàng)公式即可求出第5節(jié)的容積【詳解】解:設(shè)竹子自上而下各節(jié)的容積分別為:,,,,且為等差數(shù)列,根據(jù)題意得:,,即①,②,②①得:,解得,把代入①得:,則故選:B【點(diǎn)睛】本題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項(xiàng)公式化簡求值,屬于中檔題9、C【解析】先過點(diǎn)作于點(diǎn),連接,根據(jù)題意,得到即為直線與平面所成的角,設(shè)正方體棱長為,設(shè),推出,進(jìn)而可求出結(jié)果.【詳解】過點(diǎn)作于點(diǎn),連接,因?yàn)樗睦庵鶠檎襟w,所以易得平面,因此即為直線與平面所成的角,設(shè)正方體棱長為,設(shè),則,,因?yàn)閮牲c(diǎn)分別從點(diǎn)和點(diǎn)出發(fā),以相同的速度在棱和上運(yùn)動至點(diǎn)和點(diǎn),所以,因此,所以,因?yàn)?,所以,則,因此.故選:C.【點(diǎn)睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于??碱}型.10、A【解析】由橢圓的定義得,進(jìn)而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因?yàn)橛蓹E圓的定義得,,所以,因?yàn)槭堑闹悬c(diǎn),是的中點(diǎn),所以.故選:A11、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結(jié)論進(jìn)行否定即可.【詳解】命題“”的否定是“”.故選:C12、D【解析】直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡可得結(jié)論.【詳解】故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、33【解析】根據(jù)分層抽樣的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槌槿×艘粋€容量為n的樣本,其中高三學(xué)生有11人,所以有,故答案為:3314、【解析】對,根據(jù)數(shù)列的單調(diào)性和可判斷;對和,利用等差數(shù)列的通項(xiàng)公式可直接推導(dǎo);對,利用等差數(shù)列的前項(xiàng)和可直接推導(dǎo).【詳解】不妨設(shè)等差數(shù)列的首項(xiàng)為對,,可得:,解得:,即又,則是遞減的,則中的前5項(xiàng)均為正數(shù),所以和都是中的最大項(xiàng),故正確;對,,故有:,故正確;對,,又,則,說明不存在使和同號,故錯誤;對,有:故并不是恒成立的,故錯誤故答案為:15、【解析】求導(dǎo)得有兩個極值點(diǎn)等價于函數(shù)有一個不等于1的零點(diǎn),分離參數(shù)得,令,利用導(dǎo)數(shù)研究的單調(diào)性并作出的圖象,根據(jù)圖象即可得出k的取值范圍【詳解】函數(shù)的定義域?yàn)?,,令,解得或,若函?shù)有2個極值點(diǎn),則函數(shù)與圖象在上恰有1個橫坐標(biāo)不為1的交點(diǎn),而,令,令或,故在和上單調(diào)遞減,在上單調(diào)遞增,又,如圖所示,由圖可得.故答案為:16、9或10【解析】等差數(shù)列通項(xiàng)公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因?yàn)?,公差,所以?0時,取得最大值故答案為:9或10三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點(diǎn),連接,,,先證明平面,再由平面得,(2)等體積法求解.根據(jù)題目條件,先證明為三棱錐的高,再求出以為頂點(diǎn),為底面的三棱錐的體積和以為頂點(diǎn),為底面的三棱錐的體積,根據(jù),求點(diǎn)到平面的距離.【詳解】(1)證明:如圖,取的中點(diǎn),連接,,依題意可知,,均為正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即為三棱錐的高由題意得,∵為的中點(diǎn),∴在中,,∴,,∴在中,邊上的高,∴的面積的面積點(diǎn)到平面的距離即點(diǎn)到平面的距離設(shè)點(diǎn)到平面的距離為,由,得,即,解得,即點(diǎn)到平面的距離為18、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個法向量,則有:取,可得:設(shè)平面的一個法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為19、(1)(2)或【解析】(1)設(shè)曲線上的任意一點(diǎn),由題意可得,化簡即可得出(2)分直線的斜率不存在與存在兩種情況討論,當(dāng)斜率不存在時,即可求出、的坐標(biāo),從而求出,當(dāng)直線的斜率存在,設(shè)直線方程為,,,聯(lián)立直線與圓的方程,消元列出韋達(dá)定理,則,即可求出,從而求出直線方程,由圓心在直線上,即可求出弦長;【小問1詳解】解:(1)設(shè)曲線上的任意一點(diǎn),由題意可得:,即,整理得【小問2詳解】解:依題意當(dāng)直線的斜率不存在時,直線方程為,則,則或,即、,所以、,所以滿足條件,此時,當(dāng)直線的斜率存在,設(shè)直線方程為,,,則,消去整理得,由,解得或,所以、,因?yàn)?,,所以,解得,所以直線方程為,又直線過圓心,所以,綜上可得或;20、(1)(2)【解析】(1)代入點(diǎn)即可求得拋物線方程;(2)聯(lián)立方程后利用韋達(dá)定理求出,,,,然后代入即可求得斜率的積.【小問1詳解】解:點(diǎn)A(1,2)在拋物線C∶上故【小問2詳解】設(shè)直線方程為:聯(lián)立方程,整理得:由題意及韋達(dá)定理可得:,21、(1);(2);(3)證明見解析.【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)聯(lián)立直線和橢圓的方程求出弦長和三角形的高即得解;(3)聯(lián)立直線和橢圓的方程,得到韋達(dá)定理,再利用平面向量證明.【小問1詳解】解:由題得,所以橢圓方程為,因?yàn)闄E圓過點(diǎn)所以,所以所以橢圓的方程為.【小問2詳解】解:由題得,所以直線的方程為即,聯(lián)立直線和橢圓方程得,所以,點(diǎn)到直線的距離為.所以的面積為.【小問3詳解】解:設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得,設(shè),所以,由題得,,所以,所以,所以,又有公共點(diǎn),所以三點(diǎn)共線.22、(1)(2),或【解析】(1)由橢圓的性質(zhì)可知:,解得a和c的值,即可求得橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電商平臺用戶體驗(yàn)設(shè)計用戶為中心的交互創(chuàng)新
- 2025年度綜合交通樞紐監(jiān)理分公司技術(shù)服務(wù)協(xié)議
- 現(xiàn)代科技助力社區(qū)活動中心便捷化運(yùn)營方案
- 2025年度廣告牌多媒體內(nèi)容制作與承攬合同
- 生物科技在醫(yī)療診斷技術(shù)中的創(chuàng)新應(yīng)用
- 災(zāi)害預(yù)警系統(tǒng)在城市防災(zāi)中的應(yīng)用與效果
- 電商運(yùn)營數(shù)據(jù)的趨勢分析與預(yù)測
- 2025年度建筑行業(yè)特種作業(yè)人員勞動合同范本-@-1
- 現(xiàn)代人如何養(yǎng)好腸胃
- 現(xiàn)代礦工的安全培訓(xùn)與健康管理策略
- 06歲兒童眼保健知識培訓(xùn)課件
- 企業(yè)商業(yè)秘密保護(hù)操作指引(2023版)
- 三年級數(shù)學(xué)口算題300道 (可直接打印)
- 益生芽孢桿菌體外抑菌活性及耐藥性研究
- 2023數(shù)聯(lián)網(wǎng)(DSSN)白皮書
- ISO17025經(jīng)典培訓(xùn)教材
- 消防設(shè)施操作和維護(hù)保養(yǎng)規(guī)程
- 反面典型案例剖析材料范文(通用6篇)
- 餐飲行業(yè)品牌介紹商務(wù)宣傳PPT模板
- 關(guān)于中小企業(yè)人才流失的調(diào)查分析報告畢業(yè)論文
- 質(zhì)量源于設(shè)計課件
評論
0/150
提交評論