版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)易2025屆高二上數(shù)學(xué)期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列關(guān)于斜二測畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④2.過拋物線C:的準(zhǔn)線上任意一點(diǎn)作拋物線的切線,切點(diǎn)為,若在軸上存在定點(diǎn),使得恒成立,則點(diǎn)的坐標(biāo)為()A. B.C. D.3.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.4.已知向量,且,則()A. B.C. D.5.函數(shù)的圖象在點(diǎn)處的切線的傾斜角為()A. B.0C. D.16.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點(diǎn),以PQR為底面作一個(gè)直三棱柱,使其另一個(gè)底面的三個(gè)頂點(diǎn)也都在正方體的表面上,則這個(gè)直三棱柱的體積為()A. B.C. D.7.若動(dòng)點(diǎn)在方程所表示的曲線上,則以下結(jié)論正確的是()①曲線關(guān)于原點(diǎn)成中心對稱圖形;②動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的取值范圍為;③動(dòng)點(diǎn)與點(diǎn)的最小距離為;④動(dòng)點(diǎn)與點(diǎn)的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④8.點(diǎn)到直線的距離為2,則的值為()A.0 B.C.0或 D.0或9.已知是等比數(shù)列,,,則()A. B.C. D.10.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.11.已知向量,則()A.5 B.6C.7 D.812.連續(xù)拋擲一枚均勻硬幣3次,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至少2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面二、填空題:本題共4小題,每小題5分,共20分。13.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來研究數(shù).他們根據(jù)沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項(xiàng)為__________,五邊形數(shù)的第項(xiàng)為__________.14.已知數(shù)列的通項(xiàng)公式,則數(shù)列的前5項(xiàng)為______.15.用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中個(gè)位小于百位且百位小于萬位的五位數(shù)有n個(gè),則的展開式中,的系數(shù)是___________.(用數(shù)字作答)16.已知正項(xiàng)等比數(shù)列的前n項(xiàng)和為,且,則的最小值為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,焦點(diǎn),A,B是上關(guān)于原點(diǎn)對稱的兩點(diǎn),的周長的最小值為(1)求的方程;(2)直線FA與交于點(diǎn)M(異于點(diǎn)A),直線FB與交于點(diǎn)N(異于點(diǎn)B),證明:直線MN過定點(diǎn)18.(12分)如圖,在三棱柱中,四邊形為矩形,,,點(diǎn)E為棱的中點(diǎn),.(1)求證:平面平面;(2)求平面AEB與平面夾角的余弦值.19.(12分)已知橢圓的左、右焦點(diǎn)分別為,過右焦點(diǎn)作直線交于,其中的周長為的離心率為.(1)求的方程;(2)已知的重心為,設(shè)和的面積比為,求實(shí)數(shù)的取值范圍.20.(12分)在中,內(nèi)角,,的對邊分別為,,.若,且.(1)求角的大??;(2)若的面積為,求的最大值.21.(12分)已知數(shù)列滿足(1)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和22.(10分)如圖在直三棱柱中,為的中點(diǎn),為的中點(diǎn),是中點(diǎn),是與的交點(diǎn),是與的交點(diǎn).(1)求證:;(2)求證:平面;(3)求直線與平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)斜二側(cè)直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結(jié)論【詳解】由斜二測畫法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據(jù)平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據(jù)兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯(cuò)誤;根據(jù)平行于x軸的長度不變,平行于y軸的長度減半知,正方形的直觀圖不再是正方形,所以④錯(cuò)誤.故選:B.2、D【解析】設(shè)切點(diǎn),點(diǎn),聯(lián)立直線的方程和拋物線C的準(zhǔn)線方程可得,將問題轉(zhuǎn)化為對任意點(diǎn)恒成立,可得,解出,從而求出答案【詳解】設(shè)切點(diǎn),點(diǎn)由題意,拋物線C的準(zhǔn)線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對任意點(diǎn)恒成立,也就是對任意點(diǎn)恒成立因?yàn)?,,則,即對任意實(shí)數(shù)恒成立,所以,即,所以,故選:D【點(diǎn)睛】一般表示拋物線的切線方程時(shí)可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導(dǎo)數(shù)的幾何意義求解切線斜率,再代入計(jì)算.3、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.4、A【解析】利用空間向量共線的坐標(biāo)表示即可求解.【詳解】由題意可得,解得,所以.故選:A5、A【解析】求出導(dǎo)函數(shù),計(jì)算得切線斜率,由斜率求得傾斜角【詳解】,設(shè)傾斜角為,則,,故選:A6、C【解析】分別取的中點(diǎn),連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點(diǎn),連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因?yàn)檎襟w的棱長為1,所以,所以直三棱柱的體積為,故選:C7、A【解析】將原方程等價(jià)變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點(diǎn)間的距離公式,結(jié)合二次函數(shù)知識可判斷②和③;取特殊點(diǎn)可判斷④.【詳解】因?yàn)榈葍r(jià)于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關(guān)于原點(diǎn)成中心對稱圖形,故①正確;對于②,設(shè),則動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離,因?yàn)椋?,故②正確;對于③,設(shè),動(dòng)點(diǎn)與點(diǎn)的距離為,因?yàn)楹瘮?shù)在上遞減,所以當(dāng)時(shí),函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當(dāng)時(shí),因?yàn)?,所以,故④不正確.綜上所述:結(jié)論正確的是:①②.故選:A8、C【解析】根據(jù)點(diǎn)到直線的距離公式即可得出答案.【詳解】解:點(diǎn)到直線的距離為,解得或.故選:C.9、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項(xiàng)公式,則可求出,得數(shù)列是一個(gè)等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個(gè)等比數(shù)列.所以=.故選:D10、B【解析】根據(jù)橢圓中之間的關(guān)系,結(jié)合橢圓焦距的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,則焦距為,故選:B.11、A【解析】利用空間向量的模公式求解.【詳解】因向量,所以,故選:A12、D【解析】根據(jù)對立事件的定義選擇【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為“有2次或3次出現(xiàn)反面”故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】對于三角形數(shù),根據(jù)圖形尋找前后之間的關(guān)系,從而歸納出規(guī)律利用求和公式即得,對于五邊形數(shù)根據(jù)圖形尋找前后之間的關(guān)系,然后利用累加法可得通項(xiàng)公式.【詳解】由題可知三角形數(shù)的第1項(xiàng)為1,第2項(xiàng)為3=1+2,第3項(xiàng)為6=1+2+3,第4項(xiàng)為10=1+2+3+4,,因此,第10項(xiàng)為;五邊形數(shù)的第1項(xiàng)為,第2項(xiàng)為,第3項(xiàng)為,第4項(xiàng)為,…,因此,,所以當(dāng)時(shí),,當(dāng)時(shí)也適合,故,即五邊形數(shù)的第項(xiàng)為.故答案為:55;.14、【解析】根據(jù)數(shù)列的通項(xiàng)公式可得答案.【詳解】因?yàn)椋詳?shù)列的前5項(xiàng)為.故答案為:15、2022【解析】根據(jù)排列和組合計(jì)數(shù)公式求出,然后利用二項(xiàng)式定理進(jìn)行求解即可【詳解】解:用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù)中,滿足個(gè)位小于百位且百位小于萬位的五位數(shù)有個(gè),即,當(dāng)時(shí),,則系數(shù)是,故答案為:202216、16【解析】根據(jù)是等比數(shù)列,由,即可得也是等比數(shù)列,結(jié)合基本不等式的性質(zhì)即可求出的最小值.【詳解】是等比數(shù)列,,即,也是等比數(shù)列,且,,可得:,當(dāng)且僅當(dāng)時(shí)取等號,的最小值為16.故答案為:16三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)設(shè)橢圓的左焦點(diǎn)為,根據(jù)橢圓的對稱性可得,則三角形的周長為,再設(shè)根據(jù)二次函數(shù)的性質(zhì)得到,即可求出的周長的最小值為,從而得到,再根據(jù),即可求出、,從而求出橢圓方程;(2)設(shè)直線MN的方程,,,,聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,再設(shè)直線的方程、,直線的方程、,聯(lián)立直線方程,消元列出韋達(dá)定理,即可表示,即可得到,整理得,再代入,,即可得到,從而求出,即可得解;【小問1詳解】設(shè)橢圓的左焦點(diǎn)為,則由對稱性,,所以的周長為設(shè),則,當(dāng)A,B是橢圓的上下頂點(diǎn)時(shí),的周長取得最小,所以,即,又橢圓焦點(diǎn),所以,所以,所以,解得,,所以橢圓的方程為.【小問2詳解】解:當(dāng)A,B為橢圓左右頂點(diǎn)時(shí),直線MN與x軸重合;當(dāng)A,B為橢圓上下頂點(diǎn)時(shí),可得直線MN的方程為;設(shè)直線MN的方程,,,,由得,,,,設(shè)直線的方程,其中,,,由得,,,,設(shè)直線的方程,其中,,由得,,,所以,所以,所以,則,即,代入,,得,整理得,又所以,直線MN的方程為,綜上直線MN過定點(diǎn)18、(1)證明見解析(2)【解析】(1)根據(jù)矩形及勾股定理的逆定理可得線面垂直的條件,再由平面,即可證明面面垂直;(2)建立空間直角坐標(biāo)后,求出相關(guān)法向量,再用夾角公式即可.【小問1詳解】證明:由三棱柱的性質(zhì)及可知四邊形為菱形又∵∴為等邊三角形∴,又∵,∴,∴又∵四邊形為矩形∴又∵∴平面又∵平面∴平面平面.【小問2詳解】以B為原點(diǎn)BE為x軸,為y軸,BA為E軸建立空間直角坐標(biāo)系,如圖所示,,,,,,設(shè)平面的法向量為.則即∴,又∵平面ABE的法向量為,∴,∴平面ABE與平面夾角的余弦值為.19、(1)(2)【解析】(1)已知焦點(diǎn)弦三角形的周長,以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設(shè)點(diǎn)設(shè)直線,第二步聯(lián)立方程韋達(dá)定理,第三步條件轉(zhuǎn)化,利用三角形等面積法,列方程,第四步利用韋達(dá)定理進(jìn)行轉(zhuǎn)化,計(jì)算即可.【小問1詳解】因?yàn)榈闹荛L為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.令,②則,可得當(dāng)時(shí),當(dāng)時(shí),所以,又解得③由①②③得,解得.所以實(shí)數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.所以因?yàn)?,所以解得②由①②解?所以實(shí)數(shù)的取值范圍是.20、(1);(2).【解析】(1)由,等式右邊可化為余弦定理形式,根據(jù)求角即可(2)由余弦定理結(jié)合均值不等式可求出的最大值,即可求出三角面積的最大值.【詳解】(1)由得:,即:.∴,又,∴.(2)由,當(dāng)且僅當(dāng)?shù)忍柍闪?得:..【點(diǎn)睛】本題主要考查了余弦定理,均值不等式,三角形面積公式,屬于中檔題.21、(1)證明見解析,;(2).【解析】(1)由得是公差為2的等差數(shù)列,再由可得答案.(2),分為奇數(shù)、偶數(shù),分組求和即可求解.【小問1詳解】由,得,故是公差為2的等差數(shù)列,故,由,故,于是.【小問2詳解】依題意,,當(dāng)為偶數(shù)時(shí),故,當(dāng)為奇數(shù)時(shí),,綜上,.22、(1)證明見解析(2)證明見解析(3)【解析】(1)法一:通過建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積證明,法二:通過線面垂直證明,法三:根據(jù)三垂線證明;(2)法一:通過建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積證明,法二:通過面面平行證明線面平行;(3)法一:通過建立空間直角坐標(biāo)系,運(yùn)用向量方法求解,法二:運(yùn)用等體積法求解.【小問1詳解】證明:法一:在直三棱柱中,因?yàn)?,以點(diǎn)為坐標(biāo)原點(diǎn),方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.因?yàn)?,所以,所以所以,所?法二:連接,在直三棱柱中,有面,面,所以,又,則,因?yàn)?,所以面因?yàn)槊?,所以因?yàn)?,所以四邊形為正方形,所以因?yàn)?,所以面因?yàn)槊妫?法三:用三垂線定理證明:連接,在直三棱柱中,有面因?yàn)槊?,所以,又,則,因?yàn)椋悦嫠栽谄矫鎯?nèi)的射影為,因?yàn)樗倪呅螢檎叫?,所以,因此根?jù)三垂線定理可知【小問2詳解】證明:法一:因?yàn)闉榈闹悬c(diǎn),為的中點(diǎn),為中點(diǎn),是與的交點(diǎn),所以、,依題意可知為重心,則,可得所以,,設(shè)為平面的法向量,則即取得則平面的一個(gè)法向量為.所以,則,因?yàn)槠矫妫云矫?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度物業(yè)公司能源管理服務(wù)合同3篇
- 冀教版小學(xué)信息技術(shù)六年級上冊《第7課 海洋生物》說課稿
- 全國河大音像版初中信息技術(shù)七年級下冊第一章第三節(jié)《版面設(shè)計(jì)(一)》說課稿
- 2025年度物業(yè)管理公司員工勞動(dòng)合同范本(創(chuàng)新版)3篇
- Unit 1 My day (說課稿)-2023-2024學(xué)年人教PEP版英語五年級下冊
- Module 4 Unit 2 I was very nervous(說課稿)-2023-2024學(xué)年外研版(一起)英語四年級下冊001
- 25 憶讀書說課稿-2024-2025學(xué)年五年級上冊語文統(tǒng)編版
- 1 我們的好朋友-《好朋友真友誼》(說課稿)-部編版道德與法治四年級下冊
- 2025年度綠色環(huán)保外墻涂料施工合同標(biāo)準(zhǔn)范文2篇
- 2025年房產(chǎn)獨(dú)家出售合同3篇
- 江蘇某小區(qū)園林施工組織設(shè)計(jì)方案
- 能源管理總結(jié)報(bào)告
- 藥店醫(yī)保政策宣傳與執(zhí)行制度
- 勘察工作質(zhì)量及保證措施
- 體外膜肺氧合(ECMO)并發(fā)癥及護(hù)理
- 充電樁巡查記錄表
- 心電圖并發(fā)癥預(yù)防及處理
- 疏散樓梯安全要求全解析
- 汽車擾流板產(chǎn)品原材料供應(yīng)與需求分析
- 臨床醫(yī)學(xué)院畢業(yè)實(shí)習(xí)管理-new-new課件
- PLC控制系統(tǒng)合同(2024版)
評論
0/150
提交評論