版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省鳳凰縣鳳凰皇倉中學2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個2.中,三邊長之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形3.已知實數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.4.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.如圖是拋物線形拱橋,當水面在n時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.6.攢(cuán)尖是我國古代建筑中屋頂?shù)囊环N結(jié)構(gòu)樣式,多見于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個圓錐,其軸截面(過圓錐軸的截面)是底邊長為,頂角為的等腰三角形,則該屋頂?shù)拿娣e約為()A. B.C. D.7.在中,a,b,c分別為角A,B,C的對邊,已知,,的面積為,則()A. B.C. D.8.方程表示的曲線經(jīng)過的一點是()A. B.C. D.9.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.10.如圖,在三棱錐中,,,,點在平面內(nèi),且,設(shè)異面直線與所成角為,則的最大值為()A. B.C. D.11.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.12.在某次海軍演習中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護衛(wèi)艦的距離為()A.海里 B.海里C.海里 D.海里二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程為___________.14.如圖,在長方體ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是側(cè)面BCC1B1上的動點,且AP⊥BD1,記點P到平面ABCD的距離為d,則d的最大值為____________.15.函數(shù)是R上的單調(diào)遞增函數(shù),則a的取值范圍是______16.曲線在x=1處的切線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)曲線與曲線在第一象限的交點為.曲線是()和()組成的封閉圖形.曲線與軸的左交點為、右交點為.(1)設(shè)曲線與曲線具有相同的一個焦點,求線段的方程;(2)在(1)的條件下,曲線上存在多少個點,使得,請說明理由.(3)設(shè)過原點的直線與以為圓心的圓相切,其中圓的半徑小于1,切點為.直線與曲線在第一象限的兩個交點為..當對任意直線恒成立,求的值.18.(12分)如圖所示,圓錐的高,底面圓的半徑為,延長直徑到點,使得,分別過點、作底面圓的切線,兩切線相交于點,點是切線與圓的切點(1)證明:平面;(2)若平面與平面所成銳二面角的余弦值為,求該圓錐的體積19.(12分)如圖,在三棱錐中,,,為的中點.(1)求證:平面;(2)若點在棱上,且,求點到平面的距離.20.(12分)定義:設(shè)是空間的一個基底,若向量,則稱有序?qū)崝?shù)組為向量在基底下的坐標.已知是空間的單位正交基底,是空間的另一個基底,若向量在基底下的坐標為(1)求向量在基底下的坐標;(2)求向量在基底下的模21.(12分)已知直線l過點,與兩坐標軸的正半軸分別交于A,B兩點,O為坐標原點(1)若的面積為,求直線l的方程;(2)求的面積的最小值22.(10分)在平面直角坐標系中,為坐標原點,曲線上點都在軸及其右側(cè),且曲線上的任一點到軸的距離比它到圓的圓心的距離小1(1)求曲線的方程;(2)已知過點的直線交曲線于點,若,求面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用極值點的定義求解.【詳解】由導函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導數(shù)左正右負,第二個點處導數(shù)左負右正,第三個點處導數(shù)左正右正,第四個點處導數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B2、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設(shè)三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.3、B【解析】作出不等式組對應(yīng)的平面區(qū)域,然后根據(jù)線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對應(yīng)的可行域如圖三角形陰影部分,平行移動直線直線,可以看到當移動過點A時,在y軸上的截距最小,聯(lián)立,解得,當且僅當動直線即過點時,取得最小值為,故選:B4、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.5、D【解析】由題建立平面直角坐標系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.6、B【解析】由軸截面三角形,根據(jù)已知可得圓錐底面半徑和母線長,然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側(cè)面積.故選:B7、C【解析】利用面積公式,求出,進而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因為的面積為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C8、C【解析】當時可得,可得答案.【詳解】當時可得所以方程表示的曲線經(jīng)過的一點是,且其它點都不滿足方程,故選:C9、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷10、D【解析】設(shè)線段的中點為,連接,過點在平面內(nèi)作,垂足為點,證明出平面,然后以點為坐標原點,、、分別為、、軸的正方向建立空間直角坐標系,設(shè),其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設(shè)線段的中點為,連接,,為的中點,則,,則,,同理可得,,,平面,過點在平面內(nèi)作,垂足為點,因為,所以,為等邊三角形,故為的中點,平面,平面,則,,,平面,以點為坐標原點,、、分別為、、軸的正方向建立如下圖所示的空間直角坐標系,因為是邊長為的等邊三角形,為的中點,則,則、、、,由于點在平面內(nèi),可設(shè),其中,且,從而,因為,則,所以,,故當時,有最大值,即,故,即有最大值,所以,.故選:D.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.11、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.12、A【解析】利用正弦定理可求解.【詳解】設(shè)甲驅(qū)逐艦、乙護衛(wèi)艦、航母所在位置分別為A,B,C,則,,.在△ABC中,由正弦定理得,即,解得,即甲驅(qū)逐艦與乙護衛(wèi)艦的距離為海里故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將雙曲線化為標準方程后求解【詳解】,化簡得,其漸近線方程故答案為:14、##【解析】以為坐標原點,建立空間直角坐標系,求得的坐標之間的關(guān)系,以及坐標的范圍,即可求得結(jié)果.【詳解】以D為原點,為x軸,為y軸,為z軸,建立空間直角坐標系如下所示:設(shè),則,,∵,∴,解得,因為,所以c的最大值為,即點P到平面的距離d的最大值為.故答案為:.15、【解析】對求導,由題設(shè)有恒成立,再利用導數(shù)求的最小值,即可求a的范圍.【詳解】由題設(shè),,又在R上的單調(diào)遞增函數(shù),∴恒成立,令,則,∴當時,則遞減;當時,則遞增.∴,故.故答案為:.16、【解析】根據(jù)導數(shù)的幾何意義求切線方程的斜率并求出,再由點斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)一共2個,理由見解析;(3)答案見解析.【解析】(1)先求曲線的焦點,再求點的坐標,分焦點為左焦點或右焦點,求線段的方程;(2)分點在雙曲線或是橢圓的曲線上,結(jié)合條件,說明點的個數(shù);(3)首先設(shè)出直線和圓的方程,利用直線與圓相切,以及直線與曲線相交,分別表示,并計算得到的值.【詳解】(1)兩個曲線相同的焦點,,解得:,即雙曲線方程是,橢圓方程是,焦點坐標是,聯(lián)立兩個曲線,得,,即,當焦點是右焦點時,線段的方程當焦點時左焦點時,,,線段的方程(2),假設(shè)點在曲線上單調(diào)遞增∴所以點不可能在曲線上所以點只可能在曲線上,根據(jù)得可以得到當左焦點,,同樣這樣的使得不存在所以這樣的點一共2個(3)設(shè)直線方程,圓方程為直線與圓相切,所以,,根據(jù)得到補充說明:由于直線的曲線有兩個交點,受參數(shù)的影響,蘊含著如下關(guān)系,∵,當,存在,否則不存在這里可以不需討論,因為題目前假定直線與曲線有兩個交點的大前提,當共焦點時存在不存在.【點睛】關(guān)鍵點點睛:本題考查直線與橢圓和雙曲線相交的綜合應(yīng)用,本題的關(guān)鍵是曲線由橢圓和雙曲線構(gòu)成,所以研究曲線上的點時,需分兩種情況研究問題.18、(1)證明見解析;(2).【解析】(1)由線面垂直、切線的性質(zhì)可得、,再根據(jù)線面垂直的判定即可證結(jié)論.(2)若,構(gòu)建為原點,、、為x、y、z軸的空間直角坐標系,求面、面的法向量,利用空間向量夾角的坐標表示及其對應(yīng)的余弦值求R,最后由圓錐的體積公式求體積.【小問1詳解】由題設(shè),底面圓,又是切線與圓的切點,∴底面圓,則,且,而,∴平面.【小問2詳解】由題設(shè),若,可構(gòu)建為原點,、、為x、y、z軸的空間直角坐標系,又,可得,∴,,,有,,若是面的一個法向量,則,令,則,又面的一個法向量為,∴,可得,∴該圓錐的體積19、(1)證明見解析;(2)【解析】(1)易得,再由勾股定理逆定理證明,即可得線面垂直;(2)根據(jù)(1)得,進而根據(jù)幾何關(guān)系,利用等體積法求解即可.【詳解】解:(1)連接,∵,是中點,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵點在棱上,且,,為的中點.∴,∴由余弦定理得,即,∴,由(1)平面,設(shè)點到平面的距離為∴,即,解得:所以點到平面的距離為.20、(1)(2)【解析】(1)根據(jù)向量在基底下的坐標為,得出向量在基底下的坐標;(2)根據(jù)向量在基底下的坐標直接計算模即可【小問1詳解】因為向量在基底下坐標為,則,所以向量在基底下的坐標為.【小問2詳解】因為向量在基底下的坐標為,所以向量在基底下的模為.21、(1)或(2)4【解析】(1)設(shè)直線方程為,根據(jù)所過的點及面積可得關(guān)于的方程組,求出解后可得直線方程,我們也可以設(shè)直線,利用面積求出后可得直線方程.(2)結(jié)合(1)中直線方程的形式利用基本不等式可求面積的最小值.【小問1詳解】法一:(1)設(shè)直線,則解得或,所以直線或法二:設(shè)直線,,則,則,∴或﹣8所以直線或【小問2詳解】法一:∵,∴,∴,此時,∴面積的最小值為4,此時直線法二:∵,∴,此時,∴面積的最小值為4,此時直線22、(1)(2)【解析】(1)由題意直接列或根據(jù)拋物線的定義求軌跡方程(2)待定系數(shù)法設(shè)直線方程,聯(lián)立直線與拋物線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度船舶租賃與船舶租賃市場調(diào)研合同12篇
- 2025年荒地生態(tài)農(nóng)業(yè)承包管理合同4篇
- 2025年度存量房居間買賣合同信用評價體系細則3篇
- 2025版明光幼兒園食堂改造與食品安全教育合同3篇
- 二零二五版磷礦石國際貿(mào)易物流服務(wù)合同4篇
- 二零二五版煤礦自卸車租賃與運營管理合同4篇
- 二零二五年房地產(chǎn)投資咨詢中介服務(wù)協(xié)議3篇
- 2025年度高端運動裝備租賃服務(wù)合同4篇
- 2025年度企業(yè)禮品代購與品牌形象塑造協(xié)議4篇
- 2025年叉車司機駕駛技能培訓合同4篇
- 2023年上海英語高考卷及答案完整版
- 西北農(nóng)林科技大學高等數(shù)學期末考試試卷(含答案)
- 金紅葉紙業(yè)簡介-2 -紙品及產(chǎn)品知識
- 《連鎖經(jīng)營管理》課程教學大綱
- 《畢淑敏文集》電子書
- 頸椎JOA評分 表格
- 員工崗位能力評價標準
- 定量分析方法-課件
- 朱曦編著設(shè)計形態(tài)知識點
- 110kV變電站工程預(yù)算1
- 某系統(tǒng)安全安全保護設(shè)施設(shè)計實施方案
評論
0/150
提交評論