湖北省武漢市六校聯(lián)考2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁(yè)
湖北省武漢市六校聯(lián)考2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁(yè)
湖北省武漢市六校聯(lián)考2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁(yè)
湖北省武漢市六校聯(lián)考2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁(yè)
湖北省武漢市六校聯(lián)考2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省武漢市六校聯(lián)考2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.焦點(diǎn)坐標(biāo)為,(0,4),且長(zhǎng)半軸的橢圓方程為()A. B.C. D.2.已知函數(shù).設(shè)命題的定義域?yàn)?,命題的值域?yàn)?若為真,為假,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知雙曲線方程為,過(guò)點(diǎn)的直線與雙曲線只有一個(gè)公共點(diǎn),則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條4.已知點(diǎn),在雙曲線上,線段的中點(diǎn),則()A. B.C. D.5.中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為,實(shí)軸長(zhǎng)為2,則雙曲線C的方程為()A. B.C. D.6.直線的傾斜角為()A. B.C. D.7.2013年9月7日,總書(shū)記在哈薩克斯坦納扎爾巴耶夫大學(xué)發(fā)表演講在談到環(huán)境保護(hù)問(wèn)題時(shí)提出“綠水青山就是金山銀山”這一科學(xué)論新.某市為了改善當(dāng)?shù)厣鷳B(tài)環(huán)境,2014年投入資金160萬(wàn)元,以后每年投入資金比上一年增加20萬(wàn)元,從2021年開(kāi)始每年投入資金比上一年增加10%,到2025屆底該市生態(tài)環(huán)境建設(shè)投資總額大約為()(其中,,)A.2559萬(wàn)元 B.2969萬(wàn)元C.3005萬(wàn)元 D.3040萬(wàn)元8.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.9.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,則()A. B.C. D.10.設(shè)是等比數(shù)列,則“對(duì)于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.為調(diào)查學(xué)生的課外閱讀情況,學(xué)校從高二年級(jí)四個(gè)班的182人中隨機(jī)抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機(jī)剔除的個(gè)數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,212.設(shè)F是雙曲線的左焦點(diǎn),,P是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.5 B.C. D.9二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列滿足且,則________.數(shù)列的通項(xiàng)=________.14.雙曲線的漸近線方程為_(kāi)_____15.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個(gè)數(shù)的數(shù)學(xué)期望的值是______.16.橢圓的左、右焦點(diǎn)分別為,,過(guò)焦點(diǎn)的直線交該橢圓于兩點(diǎn),若的內(nèi)切圓面積為,兩點(diǎn)的坐標(biāo)分別為,,則的面積________,的值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O和點(diǎn)(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點(diǎn),求所得弦長(zhǎng)值18.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,已知.(1)求數(shù)列的通項(xiàng)公式;(2)當(dāng)為何值時(shí),最大,并求的最大值.19.(12分)如圖,在四棱錐中,底面為的中點(diǎn)(1)求證:平面;(2)若,求平面與平面的夾角大小20.(12分)已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且.(1)求A;(2)若,求外接圓面積的最小值.21.(12分)已知?jiǎng)訄A過(guò)點(diǎn)且動(dòng)圓內(nèi)切于定圓:記動(dòng)圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點(diǎn),點(diǎn)滿足求直線的方程.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若與相交于A、兩點(diǎn),設(shè),求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意可知,即可由求出,再根據(jù)焦點(diǎn)位置得出橢圓方程【詳解】因?yàn)?,所以,而焦點(diǎn)在軸上,所以橢圓方程為故選:B2、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時(shí)的取值范圍,根據(jù)和的真假性可知一真一假,分類(lèi)討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實(shí)數(shù)的取值范圍為.故選:C.3、A【解析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進(jìn)行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點(diǎn)為.①直線與雙曲線只有一個(gè)公共點(diǎn);②過(guò)點(diǎn)平行于漸近線時(shí),直線與雙曲線只有一個(gè)公共點(diǎn);③設(shè)過(guò)的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.4、D【解析】先根據(jù)中點(diǎn)弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長(zhǎng)公式求解的長(zhǎng).【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因?yàn)榈闹悬c(diǎn)為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達(dá)定理得:,,則故選:D5、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D6、D【解析】由直線斜率概念可寫(xiě)出傾斜角的正切值,進(jìn)而可求出傾斜角.【詳解】因?yàn)橹本€的斜率為,所以傾斜角.故選D【點(diǎn)睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.7、B【解析】前7年投入資金可看成首項(xiàng)為160,公差為20的等差數(shù)列,后4年投入資金可看成首項(xiàng)為260,公比為1.1的等比數(shù)列,分別求和,即可求出所求【詳解】2014年投入資金160萬(wàn)元,以后每年投入資金比上一年增加20萬(wàn)元,成等差數(shù)列,則2020年投入資金萬(wàn)元,年共7年投資總額為,從2021年開(kāi)始每年投入資金比上一年增加,則從2021年到2025屆投入資金成首項(xiàng)為,公比為1.1,項(xiàng)數(shù)為4的等比數(shù)列,故從2021年到2025屆投入總資金為,故到2025屆底該市生態(tài)環(huán)境建設(shè)投資總額大約為萬(wàn)元故選:8、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點(diǎn)睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.9、A【解析】先化簡(jiǎn)函數(shù)表達(dá)式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到的圖象.故選:A10、C【解析】根據(jù)嚴(yán)格遞增數(shù)列定義可判斷必要性,分類(lèi)討論可判斷充分性.【詳解】若是嚴(yán)格遞增數(shù)列,顯然,所以“對(duì)于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”必要條件;對(duì)任意的正整數(shù)n都成立,所以中不可能同時(shí)含正項(xiàng)和負(fù)項(xiàng),,即,或,即,當(dāng)時(shí),有,即,是嚴(yán)格遞增數(shù)列,當(dāng)時(shí),有,即,是嚴(yán)格遞增數(shù)列,所以“對(duì)于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”充分條件故選:C11、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機(jī)剔除人.故選:A.12、B【解析】由雙曲線的的定義可得,于是將問(wèn)題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設(shè)雙曲線的由焦點(diǎn)為,且點(diǎn)A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取得等號(hào).故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當(dāng)時(shí),,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項(xiàng)為,所以,即,所以,當(dāng)時(shí),可得,其中也滿足,所以數(shù)列的通項(xiàng)公式為.故答案為:;.14、【解析】將雙曲線方程化成標(biāo)準(zhǔn)方程,得到且,利用雙曲線漸近線方程,可得結(jié)果【詳解】把雙曲線化成標(biāo)準(zhǔn)方程為,且,雙曲線的漸近線方程為,即故答案為【點(diǎn)睛】本題主要考查利用雙曲線的方程求漸近線方程,意在考查對(duì)基礎(chǔ)知識(shí)的掌握情況,屬于基礎(chǔ)題.若雙曲線方程為,則漸近線方程為;若雙曲線方程為,則漸近線方程為.15、【解析】設(shè)抽到的次品的個(gè)數(shù)為,則,求出對(duì)應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個(gè)數(shù)為,則,所以所以抽到次品個(gè)數(shù)的數(shù)學(xué)期望的值是故答案為:16、①.6②.3【解析】由題意得,由內(nèi)切圓面積為可得其半徑,根據(jù)焦點(diǎn)三角形面積公式可得第一空答案,結(jié)合面積公式和等面積法建立等式化簡(jiǎn)即可.【詳解】解:由得由內(nèi)切圓面積為可得其半徑,設(shè)其內(nèi)切圓圓心為則又所以.故答案為:6;3【點(diǎn)睛】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內(nèi)切圓半徑);(4).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)求出圓心和半徑,寫(xiě)出圓的方程;(2)求出圓心到直線距離,進(jìn)而利用垂徑定理求出弦長(zhǎng).【小問(wèn)1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問(wèn)2詳解】由(1)可知:圓C半徑為,設(shè)圓心(2,0)到l的距離為d,則,由垂徑定理得:18、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項(xiàng)公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為d,因?yàn)?所以,解得,所以;【小問(wèn)2詳解】,當(dāng)或7時(shí),最大,的最大值是126.19、(1)證明見(jiàn)解析(2)【解析】(1)取中點(diǎn),連結(jié),證得,利用線面平行的判定定理,即可求解;(2)以為原點(diǎn),以方面為軸,以方向?yàn)檩S,以方向?yàn)檩S,建立坐標(biāo)系,利用平面和平面的法向量的夾角公式,即可求解【小問(wèn)1詳解】取中點(diǎn),連結(jié),由,,則,又由平面,平面,所以平面.【小問(wèn)2詳解】以為原點(diǎn),以方面為軸,以方向?yàn)檩S,以方向?yàn)檩S,建立坐標(biāo)系,可得,,,,,則,,設(shè)平面的一個(gè)法向量為,則,即,令,則又平面的法向量為;則,所以平面與平面所成的銳二面角為.20、(1)(2)【解析】(1)利用二倍角公式將已知轉(zhuǎn)化為正弦函數(shù),解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圓半徑的最小值,然后可解.【小問(wèn)1詳解】因?yàn)?,所以,解得或(舍去),又為銳角三角形,所以.【小問(wèn)2詳解】因?yàn)?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以.外接圓的半徑,故外接圓面積的最小值為.21、(1);(2).【解析】(1)根據(jù)兩圓內(nèi)切,以及圓過(guò)定點(diǎn)列式求軌跡方程;(2)利用重心坐標(biāo)公式可知,,再設(shè)直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點(diǎn)的軌跡是以、為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,則因此曲線的方程是(2)因?yàn)椋瑒t點(diǎn)是的重心,易得直線的斜率存在,設(shè)直線的方程為,聯(lián)立消得:且①②由①②解得則直線的方程為即【點(diǎn)睛】本題考查直線與橢圓的問(wèn)題關(guān)系,本題的關(guān)鍵是根

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論