江西省上饒市示范名校2025屆數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
江西省上饒市示范名校2025屆數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
江西省上饒市示范名校2025屆數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
江西省上饒市示范名校2025屆數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
江西省上饒市示范名校2025屆數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省上饒市示范名校2025屆數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的定義域為()A.R B.C. D.2.函數(shù)圖象一定過點A.(0,1) B.(1,0)C.(0,3) D.(3,0)3.設(shè)全集,,,則圖中陰影部分表示的集合為A. B.C. D.4.已知函數(shù),在下列區(qū)間中,包含零點的區(qū)間是A. B.C. D.5.已知,則a,b,c的大小關(guān)系是()A. B.C. D.6.函數(shù)的圖像大致為A. B.C. D.7.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C. D.8.函數(shù)單調(diào)遞增區(qū)間為A. B.C. D.9.若用二分法逐次計算函數(shù)在區(qū)間內(nèi)的一個零點附近的函數(shù)值,所得數(shù)據(jù)如下:0.510.750.6250.562510.4620.155則方程的一個近似根(精度為0.1)為()A.0.56 B.0.57C.0.65 D.0.810.下列選項中,與最接近的數(shù)是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),且關(guān)于的方程有且僅有一個實數(shù)根,那實數(shù)的取值范圍為________12.已知函數(shù),若方程有四個不同的解,且,則的最小值是______,的最大值是______.13.函數(shù)零點的個數(shù)為______.14.函數(shù)的定義域為_______________15.函數(shù)的單調(diào)遞減區(qū)間為__16.已知集合,,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)若,求的值;(2)已知銳角,滿足,若,求的值.18.已知函數(shù)(1)當時,解方程;(2)當時,恒成立,求的取值范圍19.觀察以下等式:①②③④⑤(1)對①②③進行化簡求值,并猜想出④⑤式子的值;(2)根據(jù)上述各式的共同特點,寫出一條能反映一般規(guī)律的等式,并對等式的正確性作出證明20.為了解學生的周末學習時間(單位:小時),高一年級某班班主任對本班40名學生某周末的學習時間進行了調(diào)查,將所得數(shù)據(jù)整理繪制出如圖所示的頻率分布直方圖,根據(jù)直方圖所提供的信息:(1)求出圖中a的值;(2)求該班學生這個周末的學習時間不少于20小時的人數(shù);(3)如果用該班學生周末的學習時間作為樣本去推斷該校高一年級全體學生周末的學習時間,這樣推斷是否合理?說明理由21.已知函數(shù)為奇函數(shù)(1)求實數(shù)k值;(2)設(shè),證明:函數(shù)在上是減函數(shù);(3)若函數(shù),且在上只有一個零點,求實數(shù)m的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】要使函數(shù)有意義,則需要滿足即可.【詳解】要使函數(shù)有意義,則需要滿足所以的定義域為,故選:B2、C【解析】根據(jù)過定點,可得函數(shù)過定點.【詳解】因為在函數(shù)中,當時,恒有,函數(shù)的圖象一定經(jīng)過點,故選C.【點睛】本題主要考查指數(shù)函數(shù)的幾何性質(zhì),屬于簡單題.函數(shù)圖象過定點問題主要有兩種類型:(1)指數(shù)型,主要借助過定點解答;(2)對數(shù)型:主要借助過定點解答.3、B【解析】,陰影部分表示的集合為,選B.4、C【解析】因為,,所以由根的存在性定理可知:選C.考點:本小題主要考查函數(shù)的零點知識,正確理解零點定義及根的存在性定理是解答好本類題目的關(guān)鍵.5、B【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性、對數(shù)函數(shù)的單調(diào)性可得答案.【詳解】根據(jù)指數(shù)函數(shù)的單調(diào)性可知,,即,即c>1,由對數(shù)函數(shù)的單調(diào)性可知,即.所以c>a>b故選:B6、A【解析】詳解】由得,故函數(shù)的定義域為又,所以函數(shù)為奇函數(shù),排除B又當時,;當時,.排除C,D.選A7、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎(chǔ)題.8、A【解析】,所以.故選A9、B【解析】利用零點存在性定理和精確度要求即可得解.【詳解】由表格知在區(qū)間兩端點處的函數(shù)值符號相反,且區(qū)間長度不超過0.1,符合精度要求,因此,近似值可取此區(qū)間上任一數(shù)故選:B10、C【解析】,該值接近,選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用數(shù)形結(jié)合的方法,將方程根的問題轉(zhuǎn)化為函數(shù)圖象交點的問題,觀察圖象即可得到結(jié)果.【詳解】作出的圖象,如下圖所示:∵關(guān)于的方程有且僅有一個實數(shù)根,∴函數(shù)的圖象與有且只有一個交點,由圖可知,則實數(shù)的取值范圍是.故答案為:.12、①.1②.4【解析】畫出的圖像,再數(shù)形結(jié)合分析參數(shù)的的最小值,再根據(jù)對稱性與函數(shù)的解析式判斷中的定量關(guān)系化簡再求最值即可.【詳解】畫出的圖像有:因為方程有四個不同的解,故的圖像與有四個不同的交點,又由圖,,故的取值范圍是,故的最小值是1.又由圖可知,,,故,故.故.又當時,.當時,,故.又在時為減函數(shù),故當時取最大值.故答案為:(1).1(2).4【點睛】本題主要考查了數(shù)形結(jié)合求解函數(shù)零點個數(shù)以及范圍的問題,需要根據(jù)題意分析交點間的關(guān)系,并結(jié)合函數(shù)的性質(zhì)求解.屬于難題.13、2【解析】將函數(shù)的零點的個數(shù)轉(zhuǎn)化為與的圖象的交點個數(shù),在同一直角坐標系中畫出圖象即可得答案.【詳解】解:令,這,則函數(shù)的零點的個數(shù)即為與的圖象的交點個數(shù),如圖:由圖象可知,與的圖象的交點個數(shù)為2個,即函數(shù)的零點的個數(shù)為2.故答案為:2.【點睛】本題考查函數(shù)零點個數(shù)問題,可轉(zhuǎn)化為函數(shù)圖象交點個數(shù),考查學生的作圖能力和轉(zhuǎn)化能力,是基礎(chǔ)題.14、【解析】由題可知,解不等式即可得出原函數(shù)的定義域.【詳解】對于函數(shù),有,即,解得,因此,函數(shù)的定義域為.故答案為:.15、【解析】由根式內(nèi)部的代數(shù)式大于等于0,求得原函數(shù)的定義域,再求出內(nèi)層函數(shù)的減區(qū)間,即可得到原函數(shù)的減區(qū)間【詳解】由,得或,令,該函數(shù)在上單調(diào)遞減,而y=是定義域內(nèi)的增函數(shù),∴函數(shù)的單調(diào)遞減區(qū)間為故答案為:16、【解析】根據(jù)并集的定義可得答案.【詳解】,,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)5;(2).【解析】(1)根據(jù)給定條件化正余的齊次式為正切,再代入計算作答.(2)根據(jù)給定條件利用差角的余弦公式求出,結(jié)合角的范圍求出即可作答.【詳解】(1)因,所以.(2)因,是銳角,則,,又,,因此,,,則,顯然,于是得:,解得,所以的值為.18、(1)(2)【解析】(1)當時,,求出,把原方程轉(zhuǎn)化為指數(shù)方程,再利用換元法求解,即可求出結(jié)果;(2)?|a+1|≥2x?12x,令,,則對任意恒成立,利用函數(shù)的單調(diào)性求出的最大值,再求解絕對值不等式可得實數(shù)的取值范圍【小問1詳解】解:當時,,原方程等價于且,,即,且,,所以,且令,則原方程化為,整理得,解得或,即或(舍去),所以.故原方程的解為【小問2詳解】解:因為,所以,即令,因為,所以,則恒成立,即上恒成立,令函數(shù),因為函數(shù)與在上單調(diào)遞增,所以在上單調(diào)遞增因為,,所以,則,所以,解得或.故的取值范圍是19、(1)答案見解析;(2);證明見解析.【解析】(1)利用特殊角的三角函數(shù)值計算即得;(2)根據(jù)式子的特點可得等式,然后利用和差角公式及同角關(guān)系式化簡運算即得,【小問1詳解】猜想:【小問2詳解】三角恒等式為證明:=20、(1)(2)9(3)不合理,理由見解析【解析】(1)根據(jù)頻率分布直方圖中,小矩形面積和為求解即可;(2)首先求學習時間不少于20小時的頻率,再根據(jù)樣本容量乘以頻率=人數(shù),計算結(jié)果;(3)結(jié)合樣本來自同一個班級,故不具有代表性.【小問1詳解】解:因為頻率分布直方圖中,小矩形面積和為,所以,解得.【小問2詳解】解:由圖可知,該班學生周末的學習時間不少于20小時的頻率為則40名學生中周末的學習時間不少于20小時的人數(shù)為【小問3詳解】解:不合理,樣本的選取只選在高一某班,不具有代表性21、(1)-1;(2)見解析;(3).【解析】(1)由于為奇函數(shù),可得,即可得出;(2)利用對數(shù)函數(shù)的單調(diào)性和不等式的性質(zhì)通過作差即可得出;(3)利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論