FRM極值理論公開課獲獎(jiǎng)?wù)n件_第1頁
FRM極值理論公開課獲獎(jiǎng)?wù)n件_第2頁
FRM極值理論公開課獲獎(jiǎng)?wù)n件_第3頁
FRM極值理論公開課獲獎(jiǎng)?wù)n件_第4頁
FRM極值理論公開課獲獎(jiǎng)?wù)n件_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

FinancialRiskManagementHaibinXieSchoolofBankingandFinance,UniversityofInternationalBusinessandEconomicsOffice:Boxue708TelxtremeValueTheoryEVTandVaR1BaselRulesforBacktesting2ExtremeValueTheoryandVaRBaselRulesforBacktestingTheBaselCommitteeputinplaceaframeworkbasedonthedailybacktestingofVaR.Havinguptofourexceptionsisacceptable,whichdefinesagreenzone.Ifthenumberofexceptionsisfiveormore,thebankfallsintoayelloworredzoneandincursaprogressivepenalty,whichisenforcedwithahighercapitalcharge.Roughly,thecapitalchargeisexpressedasamultiplierofthe10-dayVaRatthe99%levelofconfidence.Thenormalmultiplierkis3.Afteranincursionintotheyellowzone,themultiplicativefactor,k,isincreasedfrom3to4,orplusfactordescribedintheTableinthenextslideTheBaselPenaltyZonesAppendix1WhynormalmultiplierK=3ByChebyshevinequality:P(|x-μ|>λσ)≤1/λ2.Supposesymmetricdistribution,wegetP(x-μ<-λσ)≤1/2λ2,whichdeterminestheMaxofVaR,VaRmx=λσ.Lettheconfidencelevelbe0.99,weget1/2λ2=0.01,fromwhich,wegetλ=7.071.SupposetheusualVaRiscalculatedundertheassumptionofnormaldistribution,wegetVaRN=2.326σ.Thus,weneedamultiplierifnormaldistributionisnotsatisfied.Themultiplier,K=λσ/2.36σ=3.03Appendix2VaRParameters:TomeasuretheVaR,wefirstneedtodefinetwoquantitativeparameters:theconfidencelevelandthehorizonConfidenceLevel:Thehighertheconfidencelevel,thegreatertheVaRmeasure!Itisnotclear,however,atwhatconfidencelevelshouldonestopHorizon:Thelongerthehorizon,thegreatertheVaRmeasure.Itisnotclear,however,atwhathorizonshouldonestop.VaRParameters:SomerulesforconfidencelevelandhorizonselectionThechoiceoftheconfidencelevelandhorizondependontheintendedusefortheriskmeasures.Forbacktestingpurposes,alowconfidencelevelandashorthorizonisnecessary;forcapitaladequacypurposes,ahighconfidencelevelandalonghorizonarerequired.Inpractice,theseconflictingobjectivescanbeaccommodatedbyacomplexrule,asisthecasefortheBaselmarketriskchargeExtremeValueTheoryVaRisallaboutthetailbehavioroflossdistribution,A.K.A,weareonlyinterestedinsomeextremevalueofadistribution.D.V.GnedenkoandEVT7Бори?сВлади?мировичГнеде?нко;January1,1912–December27,1995GeneralizedParetoDistributionThishastwoparametersx(theshapeparameter)andb(thescaleparameter)Bydefinition,weexpectbtobepositive.ThecumulativedistributionisGeneralizedParetoDistributionWhenunderlingdistributionofvisnormal,wehave.increasesasthetailofvgetsheavierFormostfinancialdata,in[0.1,0.4]Thek-thmomentofunderlingr.v.isfiniteifMaximumLikelihoodEstimatorTheobservations,xi,aresortedindescendingorder.SupposethattherearenuobservationsgreaterthanuWechoosexandbtomaximizeMaximumLikelihoodEstimatorConstraintsxandbaresupposedtobepositive,althoughxnotrequiredtobepositivebythedefinitionofGPD.Negativexindicates:LightertailoftheunderlingdistributioncomparedwithnormalInappropriatevalueofuischosenFromparameterstotailofvBydefinition:ThereforeAgainsemi-parametricWhypowerlaw?ExtremeValueTheory——VaR

ExpectedShortFallBlockMaximaModelsDistributionofthelargestvariableAsngoestoinfinity,andthesupportofris[-inf,inf]WeneedtoblowupthevariablewithanormalizationThelimitingdistributionisGeneralizedExtremeValueDistributionBlockMaximaModelsGeneralizedExtremeValueDistributionVaRunderGEVdistributionAnythingwrong?BlockMaximaModelsisthedistributionofthelargestvariablenotthevariableitself.The(1-q)thquantileofrisequivalentto(1-q)^nthquantileofr(n)ThecorrectVaRis18BlockMaximaModelsEstimationBydefinitionofF*,weonlyhaveONEobservationtoestimatethreeparametersWay-outApplyGEVdistributiontomaximumreturnswithineachblockMLESelectionofnGEVisalimitproperty,naslargeaspossibleForgivenT,g=T/nwheregistheeffectivenumberofobservationsforparameterestimationBalance19MultipleperiodVaRUnderEVTthemultipleperiodVaRisnotjustsquarerootoftimehorizon.Whysquarerootoftimehorizon?Underpowerlaw Fellershowsthattailriskisapproximatelyadditive,therefore:Itiseasytoseethat 20CoherentRiskMeasures1Monotonicity:ifX1<X2,2Translationinvariance:3Homogeneity:4Subadditivity:ExerciseBasedona90%confidencelevel,howmanyexceptionsinbacktestingaVaRwouldbeexpectedovera250-daytradingyear?a.10b.15c.25d.50Alarge,internationalbankhasatradingbookwhosesizedependsontheopportunitiesperceivedbyitstraders.Themarketriskmanagerestimatestheone-dayVaR,atthe95%confidencelevel,tobe$50million.Youareaskedtobeevaluatehowgoodajobthemanagerisdoinginestimatingtheone-dayVaR.Whichofthefollowingwouldbethemostconvincingevidencethatthemanagerisdoingapoorjob,assumingthatthelossesareidenticalandindependentlydistributed(i.i.d)?a.Overthepast250days,thereareeightexceptionsb.Overthepast250days,thelargestlossis$500millionc.Overthepast250days,themeanlossis$60milliond.Overthepast250days,thereisnoexceptionWhichofthefollowingproceduresisessentialinvalidatingtheVaRestimates?a.stress-testingb.scenarioanalysisc.backtestingd.Onceapprovedbyregulators,nofurthervalidationisrequiredTheMarketRiskAmendmenttotheBaselCapitalAccorddefinestheyellowzoneasthefollowingrangeofexceptionsoutof250observationsa.3to7b.5to9c.6to9d.6to10Extremevaluetheoryprovidesvaluableinsightaboutthetailsofreturndistributions.WhichofthefollowingstatementsaboutEVTanditsapplicationsisincorrect?a.Thepeaksoverthreshold,whichthendeterminesthenumberofobservedexceedances;thethresholdmustbesufficientlyhightoapplythetheory,butsufficientlylowsothatthenumberofobservedexceedancesisareliableestimate.b.EVThighlightsthatdistributionsjustifiedbycentrallimittheoremcanbeusedforextremevalueestimationc.EVTestimatesaresubjecttoconsiderablemodelrisk,andEVTresultsareofenverysensitivetothepreciseassumptionsmaded.Becauseobserveddatainthetailsofdistributionislimited,EVestimatescanbeverysensitivetosmallsampleeffectsandotherbiasesWhichofthefollowingstatementsregardingextremevaluetheoryisincorrect?a.IncontrasttoconventionalapproachesforestimatingVaR,EVTconsidersonlythetailbehaviorofthedistributionb.ConversationalapproachesforestimatingVaRthatassumethatthedistributionofretur

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論