版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省延邊市汪清縣第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是遞減的等比數(shù)列,的前項(xiàng)和為,若,,則=()A.54 B.36C.27 D.182.命題“對(duì)任何實(shí)數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得3.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為A. B.C. D.4.某校開學(xué)“迎新”活動(dòng)中要把3名男生,2名女生安排在5個(gè)崗位,每人安排一個(gè)崗位,每個(gè)崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.365.若,則下列結(jié)論不正確的是()A. B.C. D.6.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.7.為了更好地解決就業(yè)問題,國家在2020年提出了“地?cái)偨?jīng)濟(jì)”為響應(yīng)國家號(hào)召,有不少地區(qū)出臺(tái)了相關(guān)政策去鼓勵(lì)“地?cái)偨?jīng)濟(jì)”.某攤主2020年4月初向銀行借了免息貸款8000元,用于進(jìn)貨,因質(zhì)優(yōu)價(jià)廉,供不應(yīng)求,據(jù)測算:每月獲得的利潤是該月初投入資金的20%,每月底扣除生活費(fèi)800元,余款作為資金全部用于下月再進(jìn)貨,如此繼續(xù),預(yù)計(jì)到2021年3月底該攤主的年所得收入為()(取,)A.24000元 B.26000元C.30000元 D.32000元8.已知曲線與直線總有公共點(diǎn),則m的取值范圍是()A. B.C. D.9.若實(shí)數(shù)x,y滿足不等式組,則的最小值為()A. B.0C. D.210.()A. B.C. D.11.已知梯形中,,且,則的值為()A. B.C. D.12.在等差數(shù)列中,為其前項(xiàng)和,若.則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程為______.14.已知函數(shù),數(shù)列是正項(xiàng)等比數(shù)列,且,則__________15.若過點(diǎn)作圓的切線,則切線方程為___________.16.圓關(guān)于直線對(duì)稱的圓的方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值18.(12分)設(shè)橢圓過,兩點(diǎn),為坐標(biāo)原點(diǎn)(1)求橢圓的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn),,且?若存在,寫出該圓的方程,并求的取值范圍;若不存在,說明理由19.(12分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,且點(diǎn)在橢圓上(1)經(jīng)過點(diǎn)M(1,)作一直線交橢圓于AB兩點(diǎn),若點(diǎn)M為線段AB的中點(diǎn),求直線的斜率;(2)設(shè)橢圓C的上頂點(diǎn)為P,設(shè)不經(jīng)過點(diǎn)P的直線與橢圓C交于C,D兩點(diǎn),且,求證:直線過定點(diǎn)20.(12分)已知拋物線上的點(diǎn)P(3,c)),到焦點(diǎn)F的距離為6(1)求拋物線C的方程;(2)過點(diǎn)Q(2,1)和焦點(diǎn)F作直線l交拋物線C于A,B兩點(diǎn),求△PAB的面積21.(12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,的面積為1.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)是拋物線上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過作軸的垂線交拋物線于點(diǎn),求證:直線過定點(diǎn).22.(10分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,和分別是和的中點(diǎn),點(diǎn)在直線上,且.(1)證明:無論取何值,總有;(2)是否存在點(diǎn),使得平面與平面所成角為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)等比數(shù)列的性質(zhì)及通項(xiàng)公式計(jì)算求解即可.【詳解】由,解得或(舍去),,,故選:C2、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對(duì)任何實(shí)數(shù),都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.3、A【解析】每個(gè)同學(xué)參加的情形都有3種,故兩個(gè)同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A4、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個(gè)崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A5、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項(xiàng)中不等式的正誤.【詳解】,,,,A選項(xiàng)正確;,B選項(xiàng)錯(cuò)誤;由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,,則等號(hào)不成立,所以,C選項(xiàng)正確;,,D選項(xiàng)正確.故選:B.【點(diǎn)睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.6、A【解析】根據(jù)離心率及a,b,c的關(guān)系,可求得,代入即可得答案.【詳解】因?yàn)殡x心率,所以,所以,,則,所以C的漸近線方程為.故選:A7、D【解析】設(shè),從4月份起每月底用于下月進(jìn)借貨的資金依次記為,由題意得出的遞推關(guān)系,變形構(gòu)造出等比數(shù)列,由得其通項(xiàng)公式后可得結(jié)論【詳解】設(shè),從4月份起每月底用于下月進(jìn)借貨的資金依次記為,,、同理可得,所以,而,所以數(shù)列是等比數(shù)列,公比為,所以,,總利潤為故選:D【點(diǎn)睛】思路點(diǎn)睛:本題考查數(shù)列的實(shí)際應(yīng)用.解題方法是用數(shù)列表示月初進(jìn)貨款,得出遞推關(guān)系,然后構(gòu)造等比數(shù)列求解8、D【解析】對(duì)曲線化簡可知曲線表示以點(diǎn)為圓心,2為半徑的圓的下半部分,對(duì)直線方程化簡可得直線過定點(diǎn),畫出圖形,由圖可知,,然后求出直線的斜率即可【詳解】由,得,因?yàn)?,所以曲線表示以點(diǎn)為圓心,2為半徑的圓的下半部分,由,得,所以,得,所以直線過定點(diǎn),如圖所示設(shè)曲線與軸的兩個(gè)交點(diǎn)分別為,直線過定點(diǎn),為曲線上一動(dòng)點(diǎn),根據(jù)圖可知,若曲線與直線總有公共點(diǎn),則,得,設(shè)直線為,則,解得,或,所以,所以,所以,故選:D9、A【解析】畫出可行域,令,則,結(jié)合圖形求出最小值,即可得解;【詳解】解:畫出不等式組,表示的平面區(qū)域如圖陰影部分所示,由,解得,即,令,則.結(jié)合圖形可知當(dāng)過點(diǎn)時(shí),取得最小值,且,即故選:A10、B【解析】根據(jù)微積分基本定理即可直接求出答案.【詳解】故選:B.11、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進(jìn)而求出的值,即可求出結(jié)果.【詳解】因?yàn)?,所以又,所?故選:D.12、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出函數(shù)的導(dǎo)函數(shù),然后結(jié)合導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當(dāng)時(shí),,所以切線方程為:,故答案為:.【點(diǎn)睛】本題考查了曲線在某點(diǎn)處的切線方程的求法,屬基礎(chǔ)題.14、##9.5【解析】根據(jù)給定條件計(jì)算當(dāng)時(shí),的值,再結(jié)合等比數(shù)列性質(zhì)計(jì)算作答.【詳解】函數(shù),當(dāng)時(shí),,因數(shù)列是正項(xiàng)等比數(shù)列,且,則,,同理,令,又,則有,,所以.故答案為:15、或【解析】根據(jù)圓心到切線的距離等于圓的半徑即可求解.【詳解】由題意可知,,故在圓外,則過點(diǎn)做圓的切線有兩條,且切線斜率必存在,設(shè)切線為,即,則圓心到直線的距離,解得或,故切線方程為或故答案為:或16、【解析】求出圓心關(guān)于直線對(duì)稱點(diǎn),從而求出對(duì)稱圓的方程.【詳解】圓心為,半徑為1,設(shè)關(guān)于對(duì)稱點(diǎn)為,則,解得:,故對(duì)稱點(diǎn)為,故圓關(guān)于直線對(duì)稱的圓的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)推導(dǎo)出,取BC的中點(diǎn)F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點(diǎn),,所在直線分別為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點(diǎn)F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個(gè)法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點(diǎn)睛】用空間向量求解立體幾何問題的注意點(diǎn)(1)建立坐標(biāo)系時(shí)要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點(diǎn)的坐標(biāo)(2)用平面的法向量求二面角的大小時(shí),要注意向量的夾角與二面角大小間的關(guān)系,這點(diǎn)需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論18、(1)(2)存在,,【解析】(1)根據(jù)橢圓E:()過,兩點(diǎn),直接代入方程解方程組,解方程組即可.(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,當(dāng)切線斜率存在時(shí),設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達(dá)定理運(yùn)算,同時(shí)滿足,則存在,否則不存在;在該圓的方程存在時(shí),利用弦長公式結(jié)合韋達(dá)定理得到,結(jié)合題意求解即可,當(dāng)切線斜率不存在時(shí),驗(yàn)證即可.【小問1詳解】將,的坐標(biāo)代入橢圓的方程得,解得,所以橢圓的方程為【小問2詳解】假設(shè)滿足題意的圓存在,其方程為,其中,設(shè)該圓的任意一條切線和橢圓交于,兩點(diǎn),當(dāng)直線的斜率存在時(shí),令直線的方程為,①將其代入橢圓的方程并整理得,由韋達(dá)定理得,,②因?yàn)?,所以,③將①代入③并整理得,?lián)立②得,④因?yàn)橹本€和圓相切,因此,由④得,所以存在圓滿足題意當(dāng)切線的斜率不存在時(shí),易得,由橢圓方程得,顯然,綜上所述,存在圓滿足題意當(dāng)切線的斜率存在時(shí),由①②④得,由,得,即當(dāng)切線的斜率不存在時(shí),易得,所以綜上所述,存在圓心在原點(diǎn)的圓滿足題意,且19、(1);(2)證明見解析.【解析】(1)設(shè)橢圓的方程為代入點(diǎn)的坐標(biāo)求出橢圓的方程,再利用點(diǎn)差法求解;(2)由題得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得韋達(dá)定理,根據(jù)和韋達(dá)定理得到,即得證.【小問1詳解】解:由題設(shè)橢圓的方程為因?yàn)闄E圓經(jīng)過點(diǎn),所以所以橢圓的方程為.設(shè),所以,所以,由題得,所以,所以,所以,所以直線的斜率為.【小問2詳解】解:由題得當(dāng)直線的斜率不存在時(shí),不符合題意;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立方程組y=kx+nx24所以,解得①,設(shè),,,,則②,因?yàn)?,則,,,又,,所以③,由②③可得(舍或滿足條件①,此時(shí)直線的方程為,故直線過定點(diǎn)20、(1)(2)【解析】(1)根據(jù)拋物線的焦半徑公式求得,即可得到拋物線方程;(2)寫出直線方程,聯(lián)立拋物線方程,進(jìn)而求得弦長|AB|,再求出點(diǎn)P到直線的距離,即可求得答案.【小問1詳解】由拋物線的焦半徑公式可知:,即得,故拋物線方程為:;【小問2詳解】點(diǎn)Q(2,1)和焦點(diǎn)作直線l,則l方程為,即,聯(lián)立拋物線方程:,整理得,設(shè),則,故,點(diǎn)P(3,c)在拋物線上,則,點(diǎn)P到直線l的距離為,故△PAB的面積為.21、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點(diǎn)共線,可證明直線過定點(diǎn),方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點(diǎn).【小問1詳解】因?yàn)辄c(diǎn)在拋物線上,所以,即,,因?yàn)?,故解得,拋物線的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)直線的方程為,由,得,所以,由(1)可知當(dāng)時(shí),,此時(shí)直線的方程為,若時(shí),因?yàn)槿c(diǎn)共線,所以,即,又因?yàn)?,,化簡可得,又,進(jìn)而可得,整理得,因?yàn)樗?,此時(shí)直線的方程為,直線恒過定點(diǎn)又直線也過點(diǎn),綜上:直線過定點(diǎn)解法二:設(shè)方程,得若直線斜率存在時(shí)斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點(diǎn).若直線斜率不存在時(shí),直線方程為所以P點(diǎn)坐標(biāo)為,M點(diǎn)坐標(biāo)為此時(shí)直線方程為過點(diǎn)綜上:直線過定點(diǎn).【點(diǎn)睛】解決直線與拋物線的綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、拋物線的條件;(2)強(qiáng)化有關(guān)直線與拋物線聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度不動(dòng)產(chǎn)抵押擔(dān)保物業(yè)管理合同樣本3篇
- 2025版微股東眾籌入股協(xié)議書-新能源開發(fā)項(xiàng)目專用3篇
- 二零二五年度科研實(shí)驗(yàn)室租賃合同租金調(diào)整與設(shè)備配置補(bǔ)充協(xié)議
- 2025年度電子合同平臺(tái)用戶隱私保護(hù)合同
- 2025年度貨運(yùn)代理與集裝箱運(yùn)輸服務(wù)合同
- 二零二五年度足浴店專業(yè)技師團(tuán)隊(duì)轉(zhuǎn)讓合同
- 2025年度國際會(huì)議贊助合作協(xié)議書
- 二零二五年度酒水行業(yè)數(shù)據(jù)分析與市場調(diào)研合同
- 二零二五年度鋼材市場調(diào)研與咨詢合同
- 2025年度活動(dòng)板房銷售與城市臨時(shí)停車場建設(shè)合同
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學(xué)試卷
- 南安市第三次全國文物普查不可移動(dòng)文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- 選煤廠安全知識(shí)培訓(xùn)課件
- 項(xiàng)目前期選址分析報(bào)告
- 急性肺栓塞搶救流程
- 《形象價(jià)值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎(chǔ)理論-肝
- 小學(xué)外來人員出入校門登記表
- 《土地利用規(guī)劃學(xué)》完整課件
評(píng)論
0/150
提交評(píng)論