版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省昆明市祿勸縣第一中學數(shù)學高二上期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與直線交于點Q,m是實數(shù),O為坐標原點,則的最大值是()A.2 B.C. D.42.已知雙曲線的左、右焦點分別為,,為坐標原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.3.已知,則的最小值是()A.3 B.8C.12 D.204.在四棱錐P-ABCD中,底面ABCD,,,點E為PA的中點,,,,則點B到平面PCD的距離為()A. B.C. D.5.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.6.若函數(shù)在上有兩個極值點,則下列選項中不正確的為()A. B.C. D.7.有一機器人的運動方程為,(是時間,是位移),則該機器人在時刻時的瞬時速度為()A. B.C. D.8.已知點,是橢圓:的左、右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.9.已知隨機變量X的分布列如表所示,則()X123Pa2a3aA. B.C. D.10.已知角為第二象限角,,則的值為()A. B.C. D.11.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.12.已知全集,集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a,b>0)的左、右焦點分別為F1,F(xiàn)2,過點F1且傾斜角為的直線l與雙曲線的左、右支分別交于點A,B.且|AF2|=|BF2|,則該雙曲線的離心率為____________.14.已知實數(shù),滿足,則的最大值為______.15.在空間直角坐標系中,點到x軸的距離為___________.16.小明同學發(fā)現(xiàn)家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點,經(jīng)過測量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點位于直線PC上,則該雙曲線的焦距為____cm.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的方程為.(1)直線l1過點P(3,1),傾斜角為45°,且與圓C交于A,B兩點,求AB的長;(2)求過點P(3,1)且與圓C相切的直線l2的方程.18.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.(1)求直線的普通方程,曲線C的直角坐標方程;(2)設(shè)直線與曲線C相交于A,B兩點,點,求的值.19.(12分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.20.(12分)已知圓C:x2+y2+2ax﹣3=0,且圓C上存在兩點關(guān)于直線3x﹣2y﹣3=0對稱.(1)求圓C的半徑r;(2)若直線l過點A(2,),且與圓C交于MN,兩點,|MN|=2,求直線l的方程.21.(12分)長方體中,,點分別在上,且.(1)求證:平面;(2)求平面與平面所成角的余弦值.22.(10分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出兩直線的交點坐標,結(jié)合兩點間的距離公式得到,進而可以求出結(jié)果.【詳解】因為與的交點坐標為所以,當時,,所以的最大值是,故選:B.2、D【解析】由雙曲線的定義可設(shè),,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結(jié)合雙曲線性質(zhì)可以得到,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故,對三角形,用余弦定理,得到,結(jié)合,可得,,,代入上式子中,得到,即,結(jié)合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.3、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當且僅當時取等號,即當時取等號,故選:A4、D【解析】為中點,連接,易得為平行四邊形,進而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應(yīng)用勾股定理求相關(guān)線段長,即可得△為直角三角形,最后應(yīng)用等體積法求點面距即可.【詳解】若為中點,連接,又E為PA的中點,所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D5、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B6、C【解析】求導,根據(jù)題意可得,從而可得出答案.【詳解】解:,因為函數(shù)在上有兩個極值點,所以,即.所以ABD正確,C錯誤.故選:C.7、B【解析】對運動方程求導,根據(jù)導數(shù)意義即速度求得在時的導數(shù)值即可.【詳解】由題知,,當時,,即速度為7.故選:B8、D【解析】設(shè),先求出點,得,化簡即得解【詳解】由題意可知橢圓的焦點在軸上,如圖所示,設(shè),則,∵為等腰三角形,且,∴.過作垂直軸于點,則,∴,,即點.∵點在過點且斜率為的直線上,∴,解得,∴.故選:D【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關(guān)于離心率的方程解方程即得解).9、C【解析】根據(jù)分布列性質(zhì)計算可得;【詳解】解:依題意,解得,所以;故選:C10、C【解析】由同角三角函數(shù)關(guān)系可得,進而直接利用兩角和的余弦展開求解即可.【詳解】∵,是第二象限角,∴,∴.故選:C.11、B【解析】根據(jù)導數(shù)的性質(zhì)求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質(zhì)進行求解即可.【詳解】,當時,單調(diào)遞增,當時,單調(diào)遞減,當時,單調(diào)遞增,所以是函數(shù)的極值點,因為,且所以,故選:B12、A【解析】先求,然后求.【詳解】,,.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的定義和直角三角形的勾股定理,以及解直角三角形,可得a,c的關(guān)系,再由離心率公式可得所求值【詳解】過F2作F2N⊥AB于點N,設(shè)|AF2|=|BF2|=m,因為直線l的傾斜角為,所以在直角三角形F1F2N中,,由雙曲線的定義可得|BF1|﹣|BF2|=2a,所以|BF1|=2a+m,同理可得|AF1|=m﹣2a,所以|AB|=|BF1|﹣|AF1|=4a,即|AN|=2a,所以|AF1|=c﹣2a,因此,在直角三角形ANF2中,|AF2|2=|NF2|2+|AN|2,所以(c)2=4a2+c2,所以c=a,則,故答案為:14、【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標函數(shù)為,由圖可知,當直線過點時,直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點,則取得最大值為.故答案為:【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準確無誤作出可行域;二,畫目標函數(shù)所對應(yīng)直線時,要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標函數(shù)的最值會在可行域的端點或邊界上取得.15、【解析】由空間直角坐標系中點到軸的距離為計算可得【詳解】解:空間直角坐標系中,點到軸的距離為故答案為:16、【解析】建立直角坐標系,利用代入法、雙曲線的對稱性進行求解即可.【詳解】建立如圖所示的直角坐標系,設(shè)雙曲線的標準方程為:,因為該雙曲線的漸近線相互垂直,所以,即,因為AB=60cm,PC=20cm,所以點的坐標為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)x=3或【解析】(1)首先利用點斜式求出直線的方程,再利用點到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計算可得;(2)依題意可得點在圓外,分直線的斜率存在與不存在兩種情況討論,當直線的斜率不存在直線得到直線方程,但直線的斜率存在時設(shè)直線方程為,利用點到直線的距離公式得到方程,解得,即可得解;【小問1詳解】解:根據(jù)題意,直線的方程為,即,則圓心到直線的距離為故;【小問2詳解】解:根據(jù)題意,點在圓外,分兩種情況討論:當直線的斜率不存在時,過點的直線方程是,此時與圓C:相切,滿足題意;當直線的斜率存在時,設(shè)直線方程為,即,直線與圓相切時,圓心到直線的距離為解得此時,直線的方程為,所以滿足條件的直線的方程是或.18、(1)直線的普通方程為;曲線C的直角坐標方程為(2)【解析】(1)根據(jù)轉(zhuǎn)換關(guān)系將參數(shù)方程和極坐標方程轉(zhuǎn)化為直角坐標方程即可;(2)將直線的參數(shù)方程化為標準形式,代入曲線C的直角坐標方程,設(shè)點A,B對應(yīng)的參數(shù)分別為,利用韋達定理即可得出答案.【小問1詳解】解:將直線的參數(shù)方程中的參數(shù)消去得,則直線的普通方程為,由曲線C的極坐標方程為,得,即,由得曲線C的直角坐標方程為;【小問2詳解】解:點滿足,故點在直線上,將直線的參數(shù)方程化為標準形式(為參數(shù)),代入曲線C的直角坐標方程為,得,設(shè)點A,B對應(yīng)的參數(shù)分別為,則,所以.19、(1);(2)證明見解析.【解析】(1)根據(jù)等差數(shù)列的性質(zhì)及題干條件,可求得,代入公式,即可求得數(shù)列的通項公式;(2)由(1)可得,利用裂項相消求和法,即可求得,即可得證.【詳解】解:(1)設(shè)數(shù)列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數(shù)列的通項公式為:.(2)由(1)可得,所以,故,所以.因為,所以.【點睛】數(shù)列求和的常見方法:(1)倒序相加法:如果一個數(shù)列的前n項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和可以用倒序相加法;(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前n項和可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些項可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項求和法:一個數(shù)列的前n項和可以兩兩結(jié)合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.20、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根據(jù)對稱性可知直線m過圓心C.代入后可求a,進而可求半徑;(2)先求出圓心到直線l的距離,然后結(jié)合直線與圓相交的弦長公式可求.【小問1詳解】解:圓C的標準方程為,圓心為.因為圓C關(guān)于直線m對稱,所以直線m過圓心C.將代入,解得.此時圓C的標準方程為,半徑r=2.【小問2詳解】解:設(shè)圓心到直線距離為d,則d===1,①當直線l斜率不存在時,直線方程l為x=2,符合條件.②當直線l斜率存在時,設(shè)直線l方程為y﹣=k(x﹣2),即x﹣y﹣2k+=0,所以圓心C到直線l的距離d==1,解得,k=﹣,直線l的方程為x+﹣3=0,綜上所述,直線l的方程為x﹣2=0或x+﹣3=0.21、(1)證明見解析.(2)【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)以為坐標原點,分以所在直線為軸建立如圖所示的空間直角坐標系,由面面角的空間向量求解方法可得答案.【小問1詳解】證明:長方體中,平面,又平面,又平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)注三年級孩子的個性化發(fā)展:班主任工作計劃
- 【名師一號】2020-2021學年高中英語(人教版)必修一雙基限時練6
- 【先學后教新思路】2020高考物理一輪復習-教案5-電學設(shè)計性實驗的處理
- 2025年八年級統(tǒng)編版語文寒假復習 專題03 文言文閱讀(考點剖析+對點訓練)
- 2021高考化學考前沖刺40天練習:專題3-氧化還原反應(yīng)1
- 江蘇省揚州市江都區(qū)2024-2025學年九年級上學期1月期末歷史試題(含答案)
- 二年級蝸牛爬井詳細解題思路
- 八年級下英語單詞
- 2024-2025學年內(nèi)蒙古呼倫貝爾市扎蘭屯市九年級(上)期末英語試卷(含答案)
- 【創(chuàng)新設(shè)計】2021高考化學(江蘇專用)二輪專題提升練:第4講-物質(zhì)結(jié)構(gòu)和元素周期律(含新題及解析)
- 石化行業(yè)八大高風險作業(yè)安全規(guī)范培訓課件
- 神經(jīng)生物學(新版)課件:第九講-神經(jīng)科學進展
- GGD低壓柜檢驗報告
- 村老支書追悼詞
- DB3302T 1131-2022企業(yè)法律顧問服務(wù)基本規(guī)范
- 2022年自愿性認證活動獲證組織現(xiàn)場監(jiān)督檢查表、確認書
- 醫(yī)院藥物臨床試驗倫理委員會倫理審查申請及受理表
- 資產(chǎn)收購法律意見書范本
- 中南大學年《高等數(shù)學上》期末考試試題及答案
- 空壓機日常操作標準作業(yè)指導書
- 電子公章采集表格樣表格
評論
0/150
提交評論