安徽亳州利辛金石中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁
安徽亳州利辛金石中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁
安徽亳州利辛金石中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁
安徽亳州利辛金石中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁
安徽亳州利辛金石中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽亳州利辛金石中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.給出命題:若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限.在它的逆命題、否命題、逆否命題三個(gè)命題中,真命題的個(gè)數(shù)是()A.3 B.2C.1 D.02.方程表示的曲線為()A.拋物線與一條直線 B.上半拋物線(除去頂點(diǎn))與一條直線C.拋物線與一條射線 D.上半拋物線(除去頂點(diǎn))與一條射線3.過點(diǎn)(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=04.已知,且,則的最大值為()A. B.C. D.5.已知命題:,;命題:,.則下列命題中為真命題的是()A. B.C. D.6.如果橢圓上一點(diǎn)到焦點(diǎn)的距離等于6,則線段的中點(diǎn)到坐標(biāo)原點(diǎn)的距離等于()A.7 B.10C.12 D.147.過點(diǎn)且平行于直線的直線方程為()A. B.C. D.8.為了更好地研究雙曲線,某校高二年級(jí)的一位數(shù)學(xué)老師制作了一個(gè)如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且,則()A. B.C. D.9.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.10.一輛汽車做直線運(yùn)動(dòng),位移與時(shí)間的關(guān)系為,若汽車在時(shí)的瞬時(shí)速度為12,則()A. B.C.2 D.311.某商場(chǎng)為了解銷售活動(dòng)中某商品銷售量與活動(dòng)時(shí)間之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某次銷售活動(dòng)中的商品銷售量與活動(dòng)時(shí)間,并制作了下表:活動(dòng)時(shí)間銷售量由表中數(shù)據(jù)可知,銷售量與活動(dòng)時(shí)間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測(cè)當(dāng)時(shí),的值為()A B.C. D.12.已知拋物線,則拋物線的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實(shí)數(shù)x,y滿足約束條件,則的最大值是_________.14.已知雙曲線的左右焦點(diǎn)分別為,過點(diǎn)的直線交雙曲線右支于A,B兩點(diǎn),若是等腰三角形,且,則的面積為___________.15.空間四邊形中,,,,,,,則與所成角的余弦值等于___________16.以點(diǎn)為圓心,且與直線相切的圓的方程是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若函數(shù)的圖象在點(diǎn)處的切線與平行,求b的值;(2)在(1)的條件下證明:18.(12分)已知數(shù)列的前n項(xiàng)和為,當(dāng)時(shí),;數(shù)列中,.直線經(jīng)過點(diǎn)(1)求數(shù)列的通項(xiàng)公式和;(2)設(shè),求數(shù)列的前n項(xiàng)和,并求的最大整數(shù)n19.(12分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點(diǎn)為線段的中點(diǎn).(1)證明:平面;(2)求直線與平面所成角的正弦值.20.(12分)已知橢圓的離心率為,點(diǎn)在橢圓C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓C交于P,Q兩點(diǎn),點(diǎn)M是線段PQ的中點(diǎn),直線過點(diǎn)M,且與直線l垂直.記直線與y軸的交點(diǎn)為N,求的取值范圍.21.(12分)如圖,在長方體中,,,是棱的中點(diǎn)(1)求證:;(2)求平面與平面夾角的余弦值;(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的長;若不存在,請(qǐng)說明理由22.(10分)在平面直角坐標(biāo)系內(nèi),已知的三個(gè)頂點(diǎn)坐標(biāo)分別為(1)求邊的垂直平分線所在的直線的方程;(2)若面積為5,求點(diǎn)的坐標(biāo)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數(shù)的圖象不過第四象限,則函數(shù)是冪函數(shù)是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個(gè)命題中,真命題有一個(gè).選C2、B【解析】化簡(jiǎn)得出或,由此可得出方程表示的曲線.【詳解】由可得或,所以,方程表示的曲線為上半拋物線(除去頂點(diǎn))與一條直線,故選:B.3、A【解析】當(dāng)直線被圓截得的最弦長最大時(shí),直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點(diǎn)式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長最大,∴直線過圓心,又直線過點(diǎn)(-2,1),所以所求直線的方程為,即故選:A4、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當(dāng)且僅當(dāng)時(shí)取等號(hào)),的最大值為.故選:A.5、C【解析】利用基本不等式判斷命題的真假,由不等式性質(zhì)判斷命題的真假,進(jìn)而確定它們所構(gòu)成的復(fù)合命題的真假即可.【詳解】由,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故不存在使,所以命題為假命題,而命題為真命題,則為真,為假,故為假,為假,為真,為假.故選:C6、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點(diǎn),連接,利用中位線,即可求解出線段的中點(diǎn)到坐標(biāo)原點(diǎn)的距離.【詳解】因?yàn)闄E圓,,所以,結(jié)合得,,取的中點(diǎn),連接,所以為的中位線,所以.故選:A.7、A【解析】設(shè)直線的方程為,代入點(diǎn)的坐標(biāo)即得解.【詳解】解:設(shè)直線的方程為,把點(diǎn)坐標(biāo)代入直線方程得.所以所求的直線方程為.故選:A8、D【解析】依題意以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn)建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點(diǎn)縱坐標(biāo)代入計(jì)算即可求得橫坐標(biāo)得出結(jié)果.【詳解】以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,因?yàn)殡p曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因?yàn)椋缘目v坐標(biāo)為18.由,得,故.故選:D.9、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點(diǎn)即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因?yàn)殡p曲線經(jīng)過點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A10、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因?yàn)?,所以又汽車在時(shí)的瞬時(shí)速度為12,即即,解得故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】求出樣本中心點(diǎn)的坐標(biāo),代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點(diǎn)的坐標(biāo)代入回歸直線方程可得,解得,所以,回歸直線方程為,故當(dāng)時(shí),.故選:C.12、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出可行域,通過平移基準(zhǔn)直線到可行域邊界位置,由此求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,平移基準(zhǔn)直線到點(diǎn)時(shí),取得最大值為.故答案為:14、【解析】根據(jù)題意可知,,再結(jié)合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:15、【解析】計(jì)算出的值,利用空間向量的數(shù)量積可得出的值,即可得解.【詳解】,,所以,,所以,.所以,與所成角的余弦值為.故答案為:.16、【解析】根據(jù)直線與圓相切,圓心到直線距離等于半徑,由點(diǎn)到直線的距離公式求出半徑,然后可得.【詳解】圓心到直線的距離,又圓與直線相切,所以,所以圓的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由題意可得,從而可求出,(2)先構(gòu)造函數(shù),利用導(dǎo)數(shù)可求得對(duì)任意恒成立,對(duì)任意恒成立,從而將問題轉(zhuǎn)化為只需證對(duì)任意恒成立,再次構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值小于等于即可【詳解】(1)解:∵函數(shù)的圖象在點(diǎn)處的切線與平行,∴,解得;證明:(2)由(1)得即對(duì)任意恒成立,令,則,∵當(dāng)時(shí),,∴函數(shù)在上單調(diào)遞增,∵,∴對(duì)任意恒成立,即對(duì)任意恒成立,∴只需證對(duì)任意恒成立即可,即只需證對(duì)任意恒成立,令,則,由單調(diào)遞減,且知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴,∴得證,故不等式對(duì)任意恒成立18、(1),(2),7【解析】(1)根據(jù)之間的遞推關(guān)系,可寫出。,采用和相減得方法,可求得,由題意可推得為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式可求得答案;(2)寫出的表達(dá)式,利用錯(cuò)位相減法可求得數(shù)列的前n項(xiàng)和,進(jìn)而利用數(shù)列的單調(diào)性求的最大整數(shù)n【小問1詳解】∵,∴,則,∴,即,得又,∴,即,可得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則;∵點(diǎn)在直線上,∴,∴,即數(shù)列是等差數(shù)列,又,∴;【小問2詳解】∵,∴,∴,∴,兩式相減可得:,∴,設(shè),則,故,是單調(diào)遞增的故當(dāng)時(shí),單調(diào)遞增的,當(dāng)時(shí),;當(dāng)時(shí),,故滿足的最大整數(shù)19、(1)證明見解析;(2).【解析】(1)取的中點(diǎn),連接,,證明兩兩垂直,如圖建系,求出的坐標(biāo)以及平面的一個(gè)法向量,證明結(jié)合面,即可求證;(2)求出的坐標(biāo)以及平面的法向量,根據(jù)空間向量夾角公式計(jì)算即可求解.【小問1詳解】如圖:取的中點(diǎn),連接,,因?yàn)槭沁呴L為等邊三角形,是以為斜邊的等腰直角三角形,可得,,因?yàn)槊婷?,面面,,面,所以平面,因?yàn)槊?,所以,可得兩兩垂直,分別以所在的直線為軸建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面的一個(gè)法向量,由,可得,令,則,所以,因?yàn)?,所以,因?yàn)槊?,所以平?【小問2詳解】,,,設(shè)平面的一個(gè)法向量,由,令,,,所以,設(shè)直線與平面所成角為,則.所以直線與平面所成角的正弦值為.20、(1)(2)【解析】(1)求出后可得橢圓的方程.(2)聯(lián)立直線的方程和橢圓方程,消去后利用韋達(dá)定理可用表示,利用換元法和二次函數(shù)的性質(zhì)可求的取值范圍.小問1詳解】由題意可得,解得,.故橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè),,.聯(lián)立,整理得,則,解得,從而,.因?yàn)镸是線段PQ的中點(diǎn),所以,則,故.直線的方程為,即.令,得,則,所以.設(shè),則,故.因?yàn)?,所以,所?21、(1)證明見解析(2)(3)存點(diǎn),【解析】(1)先證明平面,由平面,可證明結(jié)論.(2)以分別為軸,建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用向量法求求解即可.(3)設(shè),,則,則由向量法結(jié)合條件可得答案.【詳解】(1)在長方體中,,又,所以平面又平面,所以.(2)以分別為軸,建立空間直角坐標(biāo)系因?yàn)?,,是棱的中點(diǎn)則則為平面的一個(gè)法向量.設(shè)為平面的一個(gè)法向量.,所以,即取,可得所以如圖平面與平面夾角為銳角,所以平面與平面夾角的余弦值為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論