![山東省東平縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view9/M01/1C/14/wKhkGWchMEuAN8GEAAI1kC4FOoA683.jpg)
![山東省東平縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view9/M01/1C/14/wKhkGWchMEuAN8GEAAI1kC4FOoA6832.jpg)
![山東省東平縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view9/M01/1C/14/wKhkGWchMEuAN8GEAAI1kC4FOoA6833.jpg)
![山東省東平縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view9/M01/1C/14/wKhkGWchMEuAN8GEAAI1kC4FOoA6834.jpg)
![山東省東平縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view9/M01/1C/14/wKhkGWchMEuAN8GEAAI1kC4FOoA6835.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省東平縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關(guān)于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關(guān)于直線對稱 D.的最大值是2.設(shè)過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關(guān)于軸對稱,為坐標(biāo)原點,若,且,則點的軌跡方程是()A. B.C. D.3.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或84.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.5.已知拋物線:的焦點為,準(zhǔn)線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.6.已知是定義在上的奇函數(shù),且當(dāng)時,.若,則的解集是()A. B.C. D.7.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.8.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.9.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.10.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.311.兩圓和相外切,且,則的最大值為()A. B.9 C. D.112.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知半徑為4的球面上有兩點A,B,AB=42,球心為O,若球面上的動點C滿足二面角C-AB-O的大小為60°14.已知集合,若,則__________.15.已知向量=(-4,3),=(6,m),且,則m=__________.16.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知都是大于零的實數(shù).(1)證明;(2)若,證明.18.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.19.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時,證明:.20.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.21.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前項和.22.(10分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結(jié)果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題.2、A【解析】
設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運算表示出,從而可利用表示出;由坐標(biāo)運算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標(biāo)運算、數(shù)量積運算;關(guān)鍵是利用動點坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運算可整理得軌跡方程.3、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題4、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.5、D【解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.6、B【解析】
利用函數(shù)奇偶性可求得在時的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當(dāng)時,,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.7、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.8、D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點在軸上,準(zhǔn)線方程,則點到焦點的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.9、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.10、C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識進(jìn)行判斷.(2)當(dāng)一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.11、A【解析】
由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當(dāng)時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.12、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
設(shè)△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在【詳解】設(shè)△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因為OA=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因為O1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO設(shè)四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O【點睛】本題考查了三棱錐的外接球問題,考查了學(xué)生的空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.14、1【解析】
分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗集合中的元素是否滿足互異性.15、8.【解析】
利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標(biāo)運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.16、【解析】
由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)答案見解析【解析】
(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.19、(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.所以是的最小值點,,則,故.【點睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.20、(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進(jìn)而證明線面平行;(2)取中點為,以為坐標(biāo)原點建立直角坐標(biāo)系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結(jié),,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結(jié),,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.21、(1);(2).【解析】
(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進(jìn)行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進(jìn)行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設(shè)數(shù)列的公比為,,,解得(2),,,,.【點睛】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應(yīng)用,難度一般
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店廚房承包合同范文
- 銷售總監(jiān)聘用合同
- 小型建筑承包合同模板
- 金融期貨合同年
- 酒店用品采購合同
- 抗轉(zhuǎn)發(fā)式干擾雷達(dá)信號設(shè)計與處理方法研究
- 勞動合同終止通知書三篇
- 隱蔽通信中視覺內(nèi)容隱私保護(hù)方法研究
- 2025年北京貨運從業(yè)資格證考試試題及答案
- 《股票投資培訓(xùn)提綱》課件
- 電子表格表格會計記賬憑證模板
- 制造過程優(yōu)化與工藝改進(jìn)培訓(xùn)
- 高考語文閱讀兒童視角的作用專項訓(xùn)練(含答案)
- 服務(wù)人員隊伍穩(wěn)定措施
- 支氣管鏡護(hù)理測試題
- 大連理工大學(xué)信封紙
- 圖形創(chuàng)意(高職藝術(shù)設(shè)計)PPT完整全套教學(xué)課件
- 北京版小學(xué)英語必背單詞
- 藝術(shù)課程標(biāo)準(zhǔn)(2022年版)
- 2023年全國4月高等教育自學(xué)考試管理學(xué)原理00054試題及答案新編
- 稀土配合物和量子點共摻雜構(gòu)筑發(fā)光軟材料及其熒光性能研究
評論
0/150
提交評論