2025屆江西省崇仁縣第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末預(yù)測(cè)試題含解析_第1頁(yè)
2025屆江西省崇仁縣第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末預(yù)測(cè)試題含解析_第2頁(yè)
2025屆江西省崇仁縣第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末預(yù)測(cè)試題含解析_第3頁(yè)
2025屆江西省崇仁縣第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末預(yù)測(cè)試題含解析_第4頁(yè)
2025屆江西省崇仁縣第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆江西省崇仁縣第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末預(yù)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.2.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.3.已知是第二象限的角,,則()A. B. C. D.4.已知雙曲線:的焦距為,焦點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.5.已知向量,且,則m=()A.?8 B.?6C.6 D.86.已知函數(shù),則的最小值為()A. B. C. D.7.設(shè)函數(shù)的定義域?yàn)?,命題:,的否定是()A., B.,C., D.,8.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F且EF=,則下列結(jié)論中錯(cuò)誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值9.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.10.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.11.已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于()A. B. C. D.12.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若x,y均為正數(shù),且,則的最小值為________.14.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國(guó)西周時(shí)期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿足勾股定理,則______.15.已知集合,,則__________.16.學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說:“作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某地在每周六的晚上8點(diǎn)到10點(diǎn)半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時(shí)刻亮燈的概率均為,并且是否亮燈彼此相互獨(dú)立.現(xiàn)統(tǒng)計(jì)了其中100盞燈在一場(chǎng)燈光展中亮燈的時(shí)長(zhǎng)(單位:),得到下面的頻數(shù)表:亮燈時(shí)長(zhǎng)/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時(shí)長(zhǎng)作為一盞燈的亮燈時(shí)長(zhǎng).(1)試估計(jì)的值;(2)設(shè)表示這10000盞燈在某一時(shí)刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時(shí),燈光展處于最佳燈光亮度.試由此估計(jì),在一場(chǎng)燈光展中,處于最佳燈光亮度的時(shí)長(zhǎng)(結(jié)果保留為整數(shù)).附:①某盞燈在某一時(shí)刻亮燈的概率等于亮燈時(shí)長(zhǎng)與燈光展總時(shí)長(zhǎng)的商;②若,則,,.18.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動(dòng)直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長(zhǎng)度最小時(shí),求s的值.19.(12分)在直角坐標(biāo)系中,長(zhǎng)為3的線段的兩端點(diǎn)分別在軸、軸上滑動(dòng),點(diǎn)為線段上的點(diǎn),且滿足.記點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)若點(diǎn)為曲線上的兩個(gè)動(dòng)點(diǎn),記,判斷是否存在常數(shù)使得點(diǎn)到直線的距離為定值?若存在,求出常數(shù)的值和這個(gè)定值;若不存在,請(qǐng)說明理由.20.(12分)已知中,內(nèi)角所對(duì)邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程及直線的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.22.(10分)在世界讀書日期間,某地區(qū)調(diào)查組對(duì)居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030不經(jīng)常閱讀合計(jì)200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動(dòng),若活動(dòng)主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即可求解.【詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.2、D【解析】

本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故對(duì)三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.3、D【解析】

利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;屬于中檔題.4、A【解析】

利用雙曲線:的焦點(diǎn)到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點(diǎn)到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.5、D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.6、C【解析】

利用三角恒等變換化簡(jiǎn)三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡(jiǎn)三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.7、D【解析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因?yàn)椋?,是全稱命題,所以其否定是特稱命題,即,.故選:D【點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.8、D【解析】

A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計(jì)算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因?yàn)?,所以平面,又因?yàn)槠矫?,所以,故正確;B.因?yàn)?,所以,且平面,平面,所以平面,故正確;C.因?yàn)闉槎ㄖ?,到平面的距離為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因?yàn)?,所以異面直線所成角為,且,當(dāng),,取為,如下圖所示:因?yàn)椋运倪呅问瞧叫兴倪呅?,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計(jì)算,難度較難.注意求解異面直線所成角時(shí),將直線平移至同一平面內(nèi).9、A【解析】

作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.10、B【解析】

根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.11、A【解析】

對(duì)復(fù)數(shù)進(jìn)行化簡(jiǎn),由于為純虛數(shù),則化簡(jiǎn)后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡(jiǎn)單題.12、B【解析】

推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

由基本不等式可得,則,即可解得.【詳解】方法一:,當(dāng)且僅當(dāng)時(shí)取等.方法二:因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí)取等.故答案為:.【點(diǎn)睛】本題考查基本不等式在求最小值中的應(yīng)用,考查學(xué)生對(duì)基本不等式的靈活使用,難度較易.14、【解析】

先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點(diǎn)睛】本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.15、【解析】

解一元二次不等式化簡(jiǎn)集合,再進(jìn)行集合的交運(yùn)算,即可得到答案.【詳解】,,.故答案為:.【點(diǎn)睛】本題考查一元二次不等式的求解、集合的交運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、C【解析】

假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說對(duì)的人數(shù).【詳解】分別獲獎(jiǎng)的說對(duì)人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對(duì)錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對(duì)錯(cuò)丙對(duì)錯(cuò)對(duì)錯(cuò)丁對(duì)錯(cuò)錯(cuò)對(duì)說對(duì)人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【點(diǎn)睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①,,②72【解析】

(1)將每組數(shù)據(jù)的組中值乘以對(duì)應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時(shí)長(zhǎng)的平均數(shù),將此平均數(shù)除以(個(gè)小時(shí)),即可得到的估計(jì)值;(2)①利用二項(xiàng)分布的均值與方差的計(jì)算公式進(jìn)行求解;②先根據(jù)條件計(jì)算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對(duì)稱性,求解出在滿足取值范圍下對(duì)應(yīng)的概率.【詳解】(1)平均時(shí)間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時(shí)間長(zhǎng)度為72分鐘.【點(diǎn)睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長(zhǎng)度模型)、二項(xiàng)分布的均值與方差、正態(tài)分布的概率計(jì)算,屬于綜合性問題,難度一般.(1)如果,則;(2)計(jì)算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對(duì)稱性對(duì)應(yīng)概率的對(duì)稱性.18、(1),(2).【解析】

根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因?yàn)閽佄锞€C的方程為,所以F的坐標(biāo)為,設(shè),因?yàn)閳AM與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點(diǎn),則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即AB取得最小值此時(shí).【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于難題.19、(1)(2)存在;常數(shù),定值【解析】

(1)設(shè)出的坐標(biāo),利用以及,求得曲線的方程.(2)當(dāng)直線的斜率存在時(shí),設(shè)出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關(guān)系,結(jié)合以及為定值,求得的值.當(dāng)直線的斜率不存在時(shí),驗(yàn)證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設(shè),,由題可得,解得又,即,消去得:(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為設(shè),由可得:由點(diǎn)到的距離為定值可得(為常數(shù))即得:即,又為定值時(shí),,此時(shí),且符合當(dāng)直線的斜率不存在時(shí),設(shè)直線方程為由題可得,時(shí),,經(jīng)檢驗(yàn),符合條件綜上可知,存在常數(shù),且定值【點(diǎn)睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,考查橢圓中的定值問題,屬于難題.20、(1);(2).【解析】

(1)由正弦定理直接可求,然后運(yùn)用兩角和的正弦公式算出;(2)化簡(jiǎn),由余弦定理得,利用基本不等式求出,確定角范圍,進(jìn)而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,基本不等式的應(yīng)用,三角函數(shù)的值域等,考查了學(xué)生運(yùn)算求解能力.21、(1),(2)最大值,最小值【解析】

(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標(biāo)方程,展開有,再根據(jù)求解.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論