2023-2024學(xué)年山東省滕州市第十一中學(xué)高三下學(xué)期期末教學(xué)質(zhì)量診斷(一模)數(shù)學(xué)試題_第1頁
2023-2024學(xué)年山東省滕州市第十一中學(xué)高三下學(xué)期期末教學(xué)質(zhì)量診斷(一模)數(shù)學(xué)試題_第2頁
2023-2024學(xué)年山東省滕州市第十一中學(xué)高三下學(xué)期期末教學(xué)質(zhì)量診斷(一模)數(shù)學(xué)試題_第3頁
2023-2024學(xué)年山東省滕州市第十一中學(xué)高三下學(xué)期期末教學(xué)質(zhì)量診斷(一模)數(shù)學(xué)試題_第4頁
2023-2024學(xué)年山東省滕州市第十一中學(xué)高三下學(xué)期期末教學(xué)質(zhì)量診斷(一模)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年山東省滕州市第十一中學(xué)高三下學(xué)期期末教學(xué)質(zhì)量診斷(一模)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.2.如圖所示,三國(guó)時(shí)代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個(gè)全等的直角三角形及一個(gè)小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計(jì),取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1083.若,,,則()A. B.C. D.4.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.85.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”意思為有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請(qǐng)問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里7.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.8.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.49.框圖與程序是解決數(shù)學(xué)問題的重要手段,實(shí)際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計(jì)算一組數(shù)據(jù)的方差,設(shè)計(jì)了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,10.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.11.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]12.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個(gè)程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線y=e-5x+2在點(diǎn)(0,3)處的切線方程為________.14.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,,則球的表面積為__________.15.已知雙曲線的左右焦點(diǎn)分別關(guān)于兩漸近線對(duì)稱點(diǎn)重合,則雙曲線的離心率為_____16.現(xiàn)有一塊邊長(zhǎng)為a的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無蓋方盒,該方盒容積的最大值是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的對(duì)邊分別為,且(1)求;(2)若,且面積的最大值為,求周長(zhǎng)的取值范圍.18.(12分)已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知?jiǎng)又本€l過右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.19.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),AEBD于E,延長(zhǎng)AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).20.(12分)新型冠狀病毒肺炎疫情發(fā)生以來,電子購物平臺(tái)成為人們的熱門選擇.為提高市場(chǎng)銷售業(yè)績(jī),某公司設(shè)計(jì)了一套產(chǎn)品促銷方案,并在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對(duì)“采用促銷”和“沒有采用促銷”的營(yíng)銷網(wǎng)點(diǎn)各選取了50個(gè),對(duì)比上一年度的銷售情況,分別統(tǒng)計(jì)了它們的年銷售總額,并按年銷售總額增長(zhǎng)的百分點(diǎn)分成5組:,分別統(tǒng)計(jì)后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長(zhǎng)10個(gè)百分點(diǎn)及以上的營(yíng)銷網(wǎng)點(diǎn)為“精英店”.(1)請(qǐng)你根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“精英店與采用促銷活動(dòng)有關(guān)”;采用促銷沒有采用促銷合計(jì)精英店非精英店合計(jì)5050100(2)某“精英店”為了創(chuàng)造更大的利潤(rùn),通過分析上一年度的售價(jià)(單位:元)和日銷量(單位:件)的一組數(shù)據(jù)后決定選擇作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的:①根據(jù)上表數(shù)據(jù)計(jì)算的值;②已知該公司成本為10元/件,促銷費(fèi)用平均5元/件,根據(jù)所求出的回歸模型,分析售價(jià)定為多少時(shí)日利潤(rùn)可以達(dá)到最大.附①:附②:對(duì)應(yīng)一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.21.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說明理由.22.(10分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.2.B【解析】

根據(jù)幾何概型的概率公式求出對(duì)應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長(zhǎng)為1,則小直角三角形的邊長(zhǎng)為,

則小正方形的邊長(zhǎng)為,小正方形的面積,

則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,

故選:B.【點(diǎn)睛】本題主要考查幾何概型的概率的應(yīng)用,求出對(duì)應(yīng)的面積之比是解決本題的關(guān)鍵.3.C【解析】

利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對(duì)數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對(duì)數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來比較,考查推理能力,屬于基礎(chǔ)題.4.A【解析】

依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.5.B【解析】

化簡(jiǎn)復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對(duì)應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對(duì)應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.6.B【解析】

人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計(jì)算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.7.D【解析】

依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.8.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。9.A【解析】

依題意問題是,然后按直到型驗(yàn)證即可.【詳解】根據(jù)題意為了計(jì)算7個(gè)數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.10.B【解析】

構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價(jià)為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問題解決問題的能力,是難題.11.B【解析】

作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.12.B【解析】

根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】

先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【詳解】因?yàn)閥′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點(diǎn)睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是14.【解析】

如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,計(jì)算得到,得到答案.【詳解】如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點(diǎn)睛】本題考查了三棱錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力,將三棱錐補(bǔ)成長(zhǎng)方體是解題的關(guān)鍵.15.【解析】

雙曲線的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱點(diǎn)重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱點(diǎn)重合,一條漸近線的斜率為1,即,,,故答案為:.【點(diǎn)睛】本題考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,確定一條漸近線的斜率為1是關(guān)鍵,屬于基礎(chǔ)題.16.【解析】

由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡(jiǎn)為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長(zhǎng)的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長(zhǎng)的取值范圍是【點(diǎn)睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長(zhǎng)的范圍問題.屬于中檔題.18.(1);(2).【解析】

(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線與圓的位置關(guān)系,得到原心到直線的距離等于半徑,得到,從而求得,進(jìn)而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達(dá)定理,向量的數(shù)量積,結(jié)合已知條件求得結(jié)果.【詳解】(1)由離心率為,可得,,且以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當(dāng)直線l的斜率不存在時(shí),,,由于;②當(dāng)直線l的斜率為0時(shí),,,則;③當(dāng)直線l的斜率不為0時(shí),設(shè)直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點(diǎn)睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,求向量數(shù)量積,在解題的過程中,注意對(duì)直線方程的分類討論,屬于中檔題目.19.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】

(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線為x軸,y軸,z軸,

建立空間直角坐標(biāo)系E-xyz,設(shè)AB=BD=DC=AD=2,

則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),

F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個(gè)法向量為,設(shè)平面ADC的一個(gè)法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.

(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【點(diǎn)睛】本題考查線面垂直的證明、幾何體體積計(jì)算、二面角有關(guān)的立體幾何綜合題,屬于中等題.20.(1)列聯(lián)表見解析,有把握;(2)①;②元時(shí)【解析】

(1)直接由題意列出列聯(lián)表,通過計(jì)算,可判斷精英店與采用促銷活動(dòng)是否有關(guān).(2)①代入表中數(shù)據(jù),結(jié)合公式求出;②由①中所得的線性回歸方程,若售價(jià)為,單價(jià)利潤(rùn)為,日銷售量為,進(jìn)而可求出日利潤(rùn),結(jié)合導(dǎo)數(shù)可求最值.【詳解】解:(1)由題意知,采用促銷中精英店的數(shù)量為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論