2025屆廣東省廣州市八區(qū)聯(lián)考高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁(yè)
2025屆廣東省廣州市八區(qū)聯(lián)考高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁(yè)
2025屆廣東省廣州市八區(qū)聯(lián)考高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁(yè)
2025屆廣東省廣州市八區(qū)聯(lián)考高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁(yè)
2025屆廣東省廣州市八區(qū)聯(lián)考高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆廣東省廣州市八區(qū)聯(lián)考高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)是A.周期為的奇函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為的偶函數(shù)2.已知偶函數(shù)在上單調(diào)遞增,且,則的解集是()A. B.或C.或 D.或3.已知直線,直線,則與之間的距離為()A. B.C. D.4.已知函數(shù),則()A.﹣1 B.C. D.35.函數(shù)的部分圖象如圖示,則將的圖象向右平移個(gè)單位后,得到的圖象解析式為()A. B.C. D.6.已知x,y滿足,求的最小值為()A.2 B.C.8 D.7.“”是的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.甲:“x是第一象限的角”,乙:“是增函數(shù)”,則甲是乙的()A充分但不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.對(duì)于實(shí)數(shù)x,“0<x<1”是“x<2”的()條件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要10.現(xiàn)在人們的環(huán)保意識(shí)越來(lái)越強(qiáng),對(duì)綠色建筑材料的需求也越來(lái)越高.某甲醛檢測(cè)機(jī)構(gòu)對(duì)某種綠色建筑材料進(jìn)行檢測(cè),一定量的該種材料在密閉的檢測(cè)房間內(nèi)釋放的甲醛濃度(單位:)隨室溫(單位:℃)變化的函數(shù)關(guān)系式為(為常數(shù)).若室溫為20℃時(shí)該房間的甲醛濃度為,則室溫為30℃時(shí)該房間的甲醛濃度約為(?。ǎ〢. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.對(duì)于定義在上的函數(shù),如果存在區(qū)間,同時(shí)滿足下列兩個(gè)條件:①在區(qū)間上是單調(diào)遞增的;②當(dāng)時(shí),函數(shù)的值域也是,則稱是函數(shù)的一個(gè)“遞增黃金區(qū)間”.下列函數(shù)中存在“遞增黃金區(qū)間”的是:___________.(填寫正確函數(shù)的序號(hào))①;②;③;④.12.的單調(diào)增區(qū)間為_(kāi)_______.13.已知函數(shù)對(duì)于任意實(shí)數(shù)x滿足.若,則_______________14.設(shè)函數(shù),且;(1)若,求的最小值;(2)若在上能成立,求實(shí)數(shù)的取值范圍15.實(shí)數(shù)271316.向量在邊長(zhǎng)為1的正方形網(wǎng)格中的位置如圖所示,則__________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù),(1)若,求函數(shù)的值域;(2)已知,且對(duì)任意的,不等式恒成立,求的取值范圍18.已知函數(shù)(1)求的定義域;(2)判斷的奇偶性,并說(shuō)明理由;(3)設(shè),證明:19.為保護(hù)環(huán)境,污水進(jìn)入河流前都要進(jìn)行凈化處理.我市工業(yè)園區(qū)某工廠的污水先排入凈化池,然后加入凈化劑進(jìn)行凈化處理.根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每放入1個(gè)單位的凈化劑,在污水中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:小時(shí))變化的函數(shù)關(guān)系式近似為.若多次加進(jìn)凈化劑,則某一時(shí)刻凈化劑在污水中釋放的濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)凈化劑在污水中釋放的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化污水的作用.(1)若投放1個(gè)單位的凈化劑4小時(shí)后,求凈化劑在污水中釋放的濃度;(2)若一次投放4個(gè)單位的凈化劑并起到凈化污水的作用,則凈化時(shí)間約達(dá)幾小時(shí)?(結(jié)果精確到0.1,參考數(shù)據(jù):,)(3)若第一次投放1個(gè)單位的凈化劑,3小時(shí)后再投放2個(gè)單位的凈化劑,設(shè)第二次投放t小時(shí)后污水中凈化劑濃度為(毫克/立方米),其中,求的表達(dá)式和濃度的最小值.20.若二次函數(shù)滿足,且.(1)求的解析式;(2)若在區(qū)間上,不等式恒成立,求實(shí)數(shù)的取值范圍.21.已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域D內(nèi)存在,使得成立函數(shù)是否屬于集合M?說(shuō)明理由;若函數(shù)屬于集合M,試求實(shí)數(shù)k和b滿足的約束條件;設(shè)函數(shù)屬于集合M,求實(shí)數(shù)a的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】對(duì)于函數(shù)y=sin,T=4π,且sin(-)=-sin.故選A2、B【解析】由已知和偶函數(shù)的性質(zhì)將不等式轉(zhuǎn)化為,再由其單調(diào)性可得,解不等式可得答案【詳解】因?yàn)?,則,所以,因?yàn)闉榕己瘮?shù),所以,因?yàn)樵谏蠁握{(diào)遞增,所以,解得或,所以不等式的解集為或,故選:B3、D【解析】利用兩平行線間的距離公式即可求解.【詳解】直線的方程可化為,則與之間的距離故選:D4、C【解析】先計(jì)算,再代入計(jì)算得到答案.【詳解】,則故選:【點(diǎn)睛】本題考查了分段函數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力.5、D【解析】由圖像知A="1,",,得,則圖像向右移個(gè)單位后得到的圖像解析式為,故選D6、C【解析】利用兩點(diǎn)間的距離公式結(jié)合點(diǎn)到直線的距離公式即可求解.【詳解】解:表示點(diǎn)與直線上的點(diǎn)的距離的平方所以的最小值為點(diǎn)到直線的距離的平方所以最小值為:故選:C.7、A【解析】先看時(shí),是否成立,即判斷充分性;再看成立時(shí),能否推出,即判斷必要性,由此可得答案.【詳解】當(dāng)時(shí),,即“”是的充分條件;當(dāng)時(shí),,則或,則或,即成立,推不出一定成立,故“”不是的必要條件,故選:A.8、D【解析】由正弦函數(shù)的單調(diào)性結(jié)合充分必要條件的定義判定得解【詳解】由x是第一象限的角,不能得到是增函數(shù);反之,由是增函數(shù),x也不一定是第一象限角故甲是乙的既不充分又不必要條件故選D【點(diǎn)睛】本題考查充分必要條件的判定,考查正弦函數(shù)的單調(diào)性,是基礎(chǔ)題9、D【解析】從充分性和必要性的定義,結(jié)合題意,即可容易判斷.【詳解】若,則一定有,故充分性滿足;若,不一定有,例如,滿足,但不滿足,故必要性不滿足;故“0<x<1”是“x<2”的充分不必要條件.故選:.10、D【解析】由題可知,,求出,在由題中的函數(shù)關(guān)系式即可求解.【詳解】由題意可知,,解得,所以函數(shù)的解析式為,所以室溫為30℃時(shí)該房間的甲醛濃度約為.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、②③【解析】由條件可得方程有兩個(gè)實(shí)數(shù)解,然后逐一判斷即可.【詳解】∵在上單調(diào)遞增,由條件②可知,即方程有兩個(gè)實(shí)數(shù)解;∵x+1=x無(wú)實(shí)數(shù)解,∴①不存在“遞增黃金區(qū)間”;∵的兩根為:1和2,不難驗(yàn)證區(qū)間[1,2]是函數(shù)的一個(gè)“遞增黃金區(qū)間”;在同一坐標(biāo)系中畫出與的圖象如下:由圖可得方程有兩個(gè)根,∴③也存在“遞增黃金區(qū)間”;在同一坐標(biāo)系中畫出與的圖象如下:所以沒(méi)有實(shí)根,∴④不存在.故答案為:②③.12、【解析】求出給定函數(shù)的定義域,由對(duì)數(shù)函數(shù)、正弦函數(shù)單調(diào)性結(jié)合復(fù)合函數(shù)單調(diào)性求解作答.【詳解】依題意,,則,解得,函數(shù)中,由得,即函數(shù)在上單調(diào)遞增,當(dāng)時(shí),函數(shù)在上單調(diào)遞增,又函數(shù)在上單調(diào)遞增,所以函數(shù)的單調(diào)增區(qū)間為.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:函數(shù)的單調(diào)區(qū)間是定義域的子區(qū)間,求函數(shù)的單調(diào)區(qū)間,正確求出函數(shù)的定義域是解決問(wèn)題的關(guān)鍵.13、3【解析】根據(jù)得到周期為2,可得結(jié)合可求得答案.【詳解】解:∵,所以周期為2的函數(shù),又∵,∴故答案為:314、(1)3(2)或【解析】(1)由可得,再利用基本不等式中乘“1”法的應(yīng)用計(jì)算可得;(2)將已知轉(zhuǎn)化為不等式有解,再對(duì)參數(shù)分類討論,分別計(jì)算可得.【小問(wèn)1詳解】函數(shù),由,可得,所以,當(dāng)時(shí)等號(hào)成立,又,,,解得時(shí)等號(hào)成立,所以的最小值是3.【小問(wèn)2詳解】由題知,在上能成立,即能成立,即不等式有解①當(dāng)時(shí),不等式的解集為,滿足題意;②當(dāng)時(shí),二次函數(shù)開(kāi)口向下,必存在解,滿足題意;③當(dāng)時(shí),需,解得或綜上,實(shí)數(shù)的取值范圍是或15、1【解析】直接根據(jù)指數(shù)冪運(yùn)算與對(duì)數(shù)運(yùn)算求解即可.【詳解】解:27故答案為:116、3【解析】由題意可知故答案為3三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)當(dāng)時(shí),;當(dāng)且時(shí),.【解析】(1)由題設(shè),令則,即可求值域.(2)令,將問(wèn)題轉(zhuǎn)化為在上恒成立,再應(yīng)用對(duì)勾函數(shù)的性質(zhì),討論、,分別求出的取值范圍【小問(wèn)1詳解】因?yàn)?,設(shè),則,因?yàn)椋?,即?dāng)時(shí),,當(dāng)或時(shí),,所以的值域?yàn)?【小問(wèn)2詳解】因?yàn)椋?,又可化成,因?yàn)?,所以,所以,令,則,,依題意,時(shí),恒成立,設(shè),,當(dāng)時(shí),當(dāng)且僅當(dāng),,故;當(dāng),時(shí),在上單調(diào)遞增,當(dāng)時(shí),,故,綜上所述:當(dāng)時(shí),;當(dāng)且時(shí),.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:應(yīng)用換元法及參變分離,將問(wèn)題轉(zhuǎn)化為二次函數(shù)求值域,及由不等式恒成立、對(duì)勾函數(shù)的最值求參數(shù)范圍.18、(1)(2)偶函數(shù);理由見(jiàn)解析(3)證明見(jiàn)解析【解析】(1)根據(jù)對(duì)數(shù)函數(shù)的真數(shù)大于0建立不等式求解;(2)根據(jù)函數(shù)的奇偶性定義判斷即可;(3)利用不等式的性質(zhì)及對(duì)數(shù)函數(shù)的單調(diào)性證明即可.【小問(wèn)1詳解】因?yàn)椋?,所以函?shù)的定義域是【小問(wèn)2詳解】因?yàn)椋加?,且,所以函?shù)為偶函數(shù)【小問(wèn)3詳解】因?yàn)?,所以所以所以因?yàn)槭窃龊瘮?shù),所以因?yàn)?,,所?9、(1)6毫克/立方米(2)7.1(3),;的最小值為12毫克/立方米【解析】(1)由函數(shù)解析式,將代入即可得解;(2)分和兩種情況討論,根據(jù)題意列出不等式,從而可得出答案;(3)根據(jù)題意寫出函數(shù)的解析式,再根據(jù)基本不等式即可求得最小值.【小問(wèn)1詳解】解:由,當(dāng)時(shí),,所以若投放1個(gè)單位的凈化劑4小時(shí)后,凈化劑在污水中釋放的濃度為6毫克/立方米;【小問(wèn)2詳解】解:因?yàn)閮艋瘎┰谖鬯嗅尫诺臐舛炔坏陀?(毫克/立方米)時(shí),它才能起到凈化污水的作用,當(dāng)時(shí),令,得恒成立,所以當(dāng)時(shí),起到凈化污水的作用,當(dāng)時(shí),令,得,則,所以,綜上所述當(dāng)時(shí),起到凈化污水的作用,所以若一次投放4個(gè)單位的凈化劑并起到凈化污水的作用,則凈化時(shí)間約達(dá)7.1小時(shí);【小問(wèn)3詳解】解:因?yàn)榈谝淮瓮度?個(gè)單位的凈化劑,3小時(shí)后再投入2個(gè)單位凈化劑,要計(jì)算的是第二次投放t小時(shí)后污水中凈化劑濃度為,所以,,因?yàn)?,所以,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論