版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖南師大附中思沁中學(xué)高二上數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.2.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.20223.若直線被圓截得的弦長為4,則的最大值是()A. B.C.1 D.24.若數(shù)列滿足,,則該數(shù)列的前2021項的乘積是()A. B.C.2 D.15.已知,,若,則()A.6 B.11C.12 D.226.圓心為的圓,在直線x﹣y﹣1=0上截得的弦長為,那么,這個圓的方程為()A. B.C. D.7.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)8.命題“”為真命題一個充分不必要條件是()A. B.C. D.9.已知函數(shù)在處取得極小值,則()A. B.C. D.10.圓與圓的位置關(guān)系為()A.內(nèi)切 B.外切C.相交 D.相離11.為調(diào)查學(xué)生的課外閱讀情況,學(xué)校從高二年級四個班的182人中隨機抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機剔除的個數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,212.一質(zhì)點的運動方程為(位移單位:m,時間單位:s),則該質(zhì)點在時的瞬時速度為()A.4 B.12C.15 D.21二、填空題:本題共4小題,每小題5分,共20分。13.希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.14.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.15.由曲線圍成的圖形的面積為_______________16.生活中有這樣的經(jīng)驗:三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機.這個經(jīng)驗用我們所學(xué)的數(shù)學(xué)公理可以表述為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長為的正方形,點S在底面ABCD上的射影為底面ABCD的中心點O,點P在棱SD上,且△SAC的面積為1(1)若點P是SD的中點,求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點P使得二面角P?AC?D的余弦值為?若存在,求出點P的位置;若不存在,說明理由18.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.19.(12分)如圖,水平桌面上放置一個棱長為4的正方體的水槽,水面高度恰為正方體棱長的一半,在該正方體側(cè)面有一個小孔(小孔的大小忽略不計)E,E點到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當水恰好流出時,側(cè)面與桌面所成的角的大小.20.(12分)已知直線與雙曲線交于,兩點,為坐標原點(1)當時,求線段的長;(2)若以為直徑的圓經(jīng)過坐標原點,求的值21.(12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=時,y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值22.(10分)某校從高一年級學(xué)生中隨機抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:,,…,所得到如圖所示的頻率分布直圖(1)求圖中實數(shù)的值;(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);(3)若從數(shù)學(xué)成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學(xué)生中隨機選取兩名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè),根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B2、C【解析】結(jié)合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設(shè),因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C3、A【解析】根據(jù)弦長求得的關(guān)系式,結(jié)合基本不等式求得的最大值.【詳解】圓的圓心為,半徑為,所以直線過圓心,即,由于為正數(shù),所以,當且僅當時,等號成立.故選:A4、C【解析】先由數(shù)列滿足,,計算出前5項,可得,且,再利用周期性即可得到答案.【詳解】因為數(shù)列滿足,,所以,同理可得,…所以數(shù)列每四項重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項的乘積是.故選:C.5、C【解析】根據(jù)遞推關(guān)系式計算即可求出結(jié)果.【詳解】因為,,,則,,,故選:C.6、A【解析】由垂徑定理,根據(jù)弦長的一半及圓心到直線的距離求出圓半徑,即可寫出圓的標準方程.【詳解】圓心到直線x﹣y﹣1=0的距離弦長,設(shè)圓半徑為r,則故r=2則圓的標準方程為故選:A【點睛】本題主要考查直線與圓的位置關(guān)系和圓的標準方程,屬于基礎(chǔ)題.7、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.8、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B9、A【解析】由導(dǎo)數(shù)與極值與最值的關(guān)系,列式求實數(shù)的值.【詳解】由條件可知,,,解得:,,檢驗,時,當,得或,函數(shù)的單調(diào)遞增區(qū)間是和,當,得,所以函數(shù)的單調(diào)遞減區(qū)間是,所以當時,函數(shù)取得極小值,滿足條件.所以.故選:A10、B【解析】求出兩圓的圓心距與半徑之和、半徑之差比較大小即可得出正確答案.【詳解】由可得圓心為,半徑,由可得圓心為,半徑,所以圓心距為,所以兩圓相外切,故選:B.11、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機剔除人.故選:A.12、B【解析】由瞬時變化率的定義,代入公式求解計算.【詳解】由題意,該質(zhì)點在時的瞬時速度為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點到另一個定點的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設(shè)P(x,y),由阿氏圓的定義可得即化簡得則設(shè)則由拋物線的定義可得當且僅當四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質(zhì),同時考查了阿氏圓定義的應(yīng)用.還考查了學(xué)生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大14、.【解析】根據(jù)題意,設(shè),進而根據(jù)中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設(shè),則,則,即,因為,則,即的軌跡方程為.15、【解析】當時,曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據(jù)對稱性,可知由曲線圍成的圖形的面積為考點:本小題主要考查曲線表示的平面圖形的面積的求法,考查學(xué)生分類討論思想的運用和運算求解能力.點評:解決此題的關(guān)鍵是看出所求圖形在四個象限內(nèi)是相同的,然后求出在一個象限內(nèi)的圖形的面積即可解決問題.16、不在同一直線上的三點確定一個平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個點不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點確定一個平面.故答案為:不在同一直線上的三點確定一個平面.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在,點P為棱SD靠近點D的三等分點【解析】(1)由的面積為1,得到,,由,點P為SD的中點,所以,同理可得,根據(jù)線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線為x,y,z軸,建立空間直角坐標系,假設(shè)在棱SD上存在點P,設(shè),求出平面PAC、平面ACD的一個法向量,由二面角的向量法可得答案.【小問1詳解】因為點S在底面ABCD上的射影為O,所以平面ABCD,因為四邊形ABCD是邊長為的正方形,所以,又因為的面積為1,所以,,所以,因為,點P為SD的中點,所以,同理可得,因為,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線為x,y,z軸,建立空間直角坐標系,如圖,則,,,,假設(shè)在棱SD上存在點P使二面角的余弦值為,設(shè),,,所以,,設(shè)平面PAC的一個法向量為,則,因為,,所以,令,得,,因為平面ACD的一個法向量為,所以,化簡得,解得或(舍),所以存在P點符合題意,點P為棱SD靠近點D的三等分點18、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導(dǎo)數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點,則且,求得,再兩次求導(dǎo)即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設(shè),當時,由,得,在,上為增函數(shù),則,在,上恒成立,滿足命題,當時,由,得,在上為減函數(shù),,時,,即,不滿足恒成立,不成立,綜上:的取值范圍為.小問2詳解】證明:由(1)可知,在存在極值點,則且即:要證只需證即證又由(1)可知在上為增函數(shù),且,成立.要證只需證即證:設(shè)則即在上增函數(shù)在為增函數(shù)成立.綜上,成立.19、(1)證明見解析(2)【解析】(1)由水的體積得出,進而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過點作,交于,由四邊形是平行四邊形,得出側(cè)面與桌面所成的角即側(cè)面與水面所成的角,再由直角三角形的邊角關(guān)系得出其夾角.【小問1詳解】由題意知,水的體積為,如圖所示,設(shè)正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;【小問2詳解】在平面內(nèi),過點作,交于,則四邊形是平行四邊形,,,側(cè)面與桌面所成的角即側(cè)面與水面所成的角,即側(cè)面與平面所成的角,即為所求,而,在中,,側(cè)面與桌面所成角的為20、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據(jù)圓過原點可得,設(shè),從而,聯(lián)立直線方程和雙曲線方程后利用韋達定理化簡前者可得所求的參數(shù)的值.【小問1詳解】當時,直線,設(shè),由可得,此時,故.【小問2詳解】設(shè),因為以為直徑的圓經(jīng)過坐標原點,故,故,由可得,故且,故.而可化為即,因為,所以,解得,結(jié)合其范圍可得.21、(1);(2)最大值為,最小值為.【解析】(1)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義列方程組,即可得解;(2)求導(dǎo),確定函數(shù)的單調(diào)性和極值,再和端點值比較即可得解.【詳解】(1)由題意,,因為曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,所以,,又當時,y=f(x)有極值,所以,所以;(2)由(1)得,,所以當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減;又,,,,所以在[-3,1]上的最大值為,最小值為.22、(1)a=0.03;(2)544人;(3).【解析】(1)根據(jù)圖中所有小矩形的面積之和等于1求解.
(2)根據(jù)頻率分布直方圖,得到成績不低于60分的頻率,再根據(jù)該校高一年級共有學(xué)生640人求解.
(3)由頻率分布直方圖得到成績在[40,50)和[90,100]分數(shù)段內(nèi)的人數(shù),先列舉出從數(shù)學(xué)成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學(xué)生中隨機選取兩名學(xué)生的基本事件總數(shù),再得到兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10”的基本事件數(shù),代入古典概型概率求解.【詳解】(1)∵圖中所有小矩形的面積之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.
(2)根據(jù)頻率分布直方圖,成績不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版八年級物理上冊《第四章物態(tài)變化》章末測試卷含答案
- 人教版三年級數(shù)學(xué)下冊導(dǎo)學(xué)案
- 人教版二年級語文下冊知識點歸納
- 抗生素輪換制度在控制耐藥菌傳播中的應(yīng)用
- 高一化學(xué)第三單元金屬及其化合物第三講用途廣泛的金屬材料練習題
- 2024屆江蘇省南通市海安某中學(xué)高考化學(xué)三模試卷含解析
- 2024高中地理第一章人口的變化第三節(jié)人口的合理容量課時演練含解析新人教版必修2
- 2024高中語文第一單元以意逆志知人論世自主賞析蜀相學(xué)案新人教版選修中國古代詩歌散文欣賞
- 2024高中語文第四單元創(chuàng)造形象詩文有別項羽之死作業(yè)含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考化學(xué)一輪復(fù)習第2章元素與物質(zhì)世界第1講元素與物質(zhì)分類學(xué)案魯科版
- 軟件項目應(yīng)急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運營管理限公司招聘專業(yè)技術(shù)人才5名高頻重點提升(共500題)附帶答案詳解
- (八省聯(lián)考)河南省2025年高考綜合改革適應(yīng)性演練 思想政治試卷(含答案)
- 2024年民法典知識競賽考試題庫及答案(共50題)
- 綜合測試 散文閱讀(多文本)(解析版)-2025年高考語文一輪復(fù)習(新高考)
- 鈑金設(shè)備操作培訓(xùn)
- 2024駕校經(jīng)營權(quán)承包合同
- 福建省能化集團筆試題目
- 快遞公司與驛站合作協(xié)議模板 3篇
- 水利工程招標文件樣本
- 品質(zhì)管控培訓(xùn)質(zhì)量管理與質(zhì)量控制課件
評論
0/150
提交評論