版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆四川省瀘州高中高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在空間四邊形的各邊上的依次取點,若所在直線相交于點,則A.點必在直線上 B.點必在直線上C.點必在平面外 D.點必在平面內(nèi)2.已知,,三點,點使直線,且,則點D的坐標(biāo)是(
)A. B.C. D.3.已知圓錐的底面半徑為,且它的側(cè)面開展圖是一個半圓,則這個圓錐的體積為()A. B.C. D.4.下列各組函數(shù)中,表示同一個函數(shù)的是()A.與B.與C.與D.與5.英國物理學(xué)家和數(shù)學(xué)家牛頓提出了物體在常溫環(huán)境下溫度變化的冷卻模型,設(shè)物體的初始溫度為,環(huán)境溫度為,其中,經(jīng)過后物體溫度滿足(其中k為正常數(shù),與物體和空氣的接觸狀況有關(guān)).現(xiàn)有一個的物體,放在的空氣中冷卻,后物體的溫度是,則()(參考數(shù)據(jù):)A.1.17 B.0.85C.0.65 D.0.236.已知角終邊經(jīng)過點,若,則()A. B.C. D.7.關(guān)于的不等式的解集為,且,則()A.3 B.C.2 D.8.如圖所示的程序框圖中,輸入,則輸出的結(jié)果是A.1 B.2C.3 D.49.設(shè)a是方程的解,則a在下列哪個區(qū)間內(nèi)()A.(0,1) B.(3,4)C.(2,3) D.(1,2)10.已知命題p:“”,則為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)滿足下列四個條件中的三個:①函數(shù)是奇函數(shù);②函數(shù)在區(qū)間上單調(diào)遞增;③;④在y軸右側(cè)函數(shù)的圖象位于直線上方,寫出一個符合要求的函數(shù)________________________.12.若函數(shù)(常數(shù)),對于任意兩個不同的、,當(dāng)、時,均有(為常數(shù),)成立,如果滿足條件的最小正整數(shù)為,則實數(shù)的取值范圍是___________.13.函數(shù)的值域為___________.14.已知冪函數(shù)的圖象過點,則此函數(shù)的解析式為______15.冪函數(shù)的圖象過點,則___________.16.若弧度數(shù)為2的圓心角所對的弦長為2,則這個圓心角所夾扇形的面積是___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,且,(1)求,的值;(2),求的值18.已知一次函數(shù)是上的增函數(shù),,且.(1)求的解析式;(2)若在上單調(diào)遞增,求實數(shù)的取值范圍.19.已知點是圓內(nèi)一點,直線.(1)若圓的弦恰好被點平分,求弦所在直線的方程;(2)若過點作圓的兩條互相垂直的弦,求四邊形的面積的最大值;(3)若,是上的動點,過作圓的兩條切線,切點分別為.證明:直線過定點.20.已知集合A={x|﹣2≤x≤5},B={x|m﹣6≤x≤2m﹣1}(1)當(dāng)m=﹣1時,求A∩B;(2)若集合B是集合A的子集,求實數(shù)m的取值范圍21.在平面直角坐標(biāo)系xOy中,角的頂點與原點O重合,始邊與x軸的正半軸重合,它的終邊過點,以角的終邊為始邊,逆時針旋轉(zhuǎn)得到角Ⅰ求值;Ⅱ求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題意連接EH、FG、BD,則P∈EH且P∈FG,再根據(jù)兩直線分別在平面ABD和BCD內(nèi),根據(jù)公理3則點P一定在兩個平面的交線BD上【詳解】如圖:連接EH、FG、BD,∵EH、FG所在直線相交于點P,∴P∈EH且P∈FG,∵EH?平面ABD,F(xiàn)G?平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故選B【點睛】本題考查公理3的應(yīng)用,即根據(jù)此公理證明線共點或點共線問題,必須證明此點是兩個平面的公共點,可有點在線上,而線在面上進行證明2、D【解析】先設(shè)點D的坐標(biāo),由題中條件,且,建立D點橫縱坐標(biāo)的方程,解方程即可求出結(jié)果.【詳解】設(shè)點,則由題意可得:,解得,所以D點坐標(biāo)為.【點睛】本題主要考查平面向量,屬于基礎(chǔ)題型.3、A【解析】半徑為的半徑卷成一圓錐,則圓錐的母線長為,設(shè)圓錐的底面半徑為,則,即,∴圓錐的高,∴圓錐的體積,所以的選項是正確的4、B【解析】根據(jù)兩個函數(shù)的定義域相同且對應(yīng)關(guān)系也相同,逐項判斷即可【詳解】由于函數(shù)的定義域為,函數(shù)的定義域為,所以與不是同一個函數(shù),故A錯誤;由于的定義域為,函數(shù)且定義域為,所以與是同一函數(shù),故B正確;在函數(shù)中,,解得或,所以函數(shù)的定義域為,在函數(shù)中,,解得,所以的定義域為,所以與不是同一函數(shù),故C錯誤;由于函數(shù)的定義域為,函數(shù)定義域為為,所以與不是同一函數(shù),故D錯誤;故選:B.5、D【解析】根據(jù)所給公式,將所給條件中的溫度相應(yīng)代入,利用對數(shù)的運算求解即可.【詳解】根據(jù)題意:的物體,放在的空氣中冷卻,后物體的溫度是,有:,所以,故,即,故選:D.6、C【解析】根據(jù)三角函數(shù)的定義,列出方程,即可求解.【詳解】由題意,角終邊經(jīng)過點,可得,又由,根據(jù)三角函數(shù)的定義,可得且,解得.故選:C.7、A【解析】根據(jù)一元二次不等式與解集之間的關(guān)系可得、,結(jié)合計算即可.【詳解】由不等式的解集為,得,不等式對應(yīng)的一元二次方程為,方程的解為,由韋達(dá)定理,得,,因為,所以,即,整理,得.故選:A8、B【解析】輸入x=2后,該程序框圖的執(zhí)行過程是:輸入x=2,x=2>1成立,y==2,輸出y=2選B.9、C【解析】設(shè),再分析得到即得解.【詳解】由題得設(shè),由零點定理得a∈(2,3).故答案為C【點睛】本題主要考查函數(shù)的零點和零點定理,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.10、C【解析】根據(jù)命題的否定的定義判斷【詳解】特稱命題的否定是全稱命題命題p:“”,的否定為:故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】滿足①②④的一個函數(shù)為,根據(jù)奇偶性以及單調(diào)性,結(jié)合反比例函數(shù)的性質(zhì)證明①②④.【詳解】滿足①②④對于①,函數(shù)的定義域為關(guān)于原點對稱,且,即為奇函數(shù);對于②,任取,且因為,所以,即函數(shù)在區(qū)間上單調(diào)遞增;對于④,令,當(dāng)時,,即在y軸右側(cè)函數(shù)的圖象位于直線上方故答案為:【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵在于利用定義證明奇偶性以及單調(diào)性.12、【解析】分析可知對任意的、且恒成立,且對任意的、且有解,進而可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.詳解】,因為,由可得,由題意可得對任意的、且恒成立,且對任意的、且有解,即,即恒成立,或有解,因為、且,則,若恒成立,則,解得;若或有解,則或,解得或;因此,實數(shù)的取值范圍是.故答案為:.13、【解析】由函數(shù)定義域求出的取值范圍,再由的單調(diào)性即可得解.【詳解】函數(shù)的定義域為R,而,當(dāng)且僅當(dāng)x=0時取“=”,又在R上單調(diào)遞減,于是有,所以函數(shù)的值域為.故答案為:14、##【解析】設(shè)出冪函數(shù),代入點即可求解.【詳解】由題意,設(shè),代入點得,解得,則.故答案為:.15、【解析】將點的坐標(biāo)代入解析式可解得結(jié)果.【詳解】因為冪函數(shù)的圖象過點,所以,解得.故答案為:16、【解析】根據(jù)所給弦長,圓心角求出所在圓的半徑,利用扇形面積公式求解.【詳解】由弦長為2,圓心角為2可知扇形所在圓的半徑,故,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)首先可通過二倍角公式以及將轉(zhuǎn)化為,然后帶入即可計算出的值,再然后通過以及即可計算出的值;(2)可將轉(zhuǎn)化為然后利用兩角差的正弦公式即可得出結(jié)果【詳解】⑴,因為,,所以;⑵因為,,,所以,【點睛】本題考查三角函數(shù)的相關(guān)性質(zhì),主要考查三角恒等變換,考查的公式有、、,在使用計算的時候一定要注意角的取值范圍18、(1);(2)【解析】(1)利用待定系數(shù)法,設(shè)()代入,得方程組,可求出,即求出函數(shù)解析式;(2)圖象開口向上,故只需令位于對稱軸右側(cè)即即可.試題解析:(1)由題意設(shè)(),從而,所以,解得或(不合題意,舍去)所以的解析式為.(2),則函數(shù)的圖象的對稱軸為直線,由已知得在上單調(diào)遞增,則,解得.19、(1)(2)11(3)見解析【解析】(1)由題意知,易知,進而得到弦所在直線的方程;(2)設(shè)點到直線、的距離分別為,則,,利用條件二元變一元,轉(zhuǎn)為二次函數(shù)最值問題;(3)設(shè).該圓的方程為,利用C、D在圓O:上,求出CD方程,利用直線系求解即可試題解析:(1)由題意知,∴,∵,∴,因此弦所在直線方程為,即.(2)設(shè)點到直線、的距離分別為,則,,.∴,,當(dāng)時取等號.所以四邊形面積的最大值為11.(3)由題意可知、兩點均在以為直徑的圓上,設(shè),則該圓的方程為,即:.又、在圓上,所以直線的方程為,即,由得,所以直線過定點.20、(1)A∩B=?;(2)(﹣∞,﹣5)【解析】(1)由m=﹣1求得B,再利用交集運算求解.(2)根據(jù)B?A,分B=?和B≠?兩種求解討論求解.【詳解】(1)m=﹣1時,B={x|﹣7≤x≤﹣3};∴A∩B=?;(2)∵B?A;∴①B=?時,m﹣6>2m﹣1;∴m<﹣5;②B≠?時,,此不等式組無解;∴m的取值范圍是(﹣∞,﹣5)【點睛】本題主要考查集合的基本運算以及集合基本關(guān)系的應(yīng)用,還考查了分類討論的思想,屬于基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度汽車貸款擔(dān)保合同終止條款合同4篇
- 二零二五年度臨時工勞動保障金繳納及使用合同4篇
- 2025年度汽車維修與二手車評估服務(wù)合同4篇
- 2025年能源節(jié)約型建筑設(shè)計與施工合同模板4篇
- 2025年度文化產(chǎn)業(yè)園投資合作開發(fā)合同4篇
- 2025年度廚師勞務(wù)服務(wù)及菜品研發(fā)合作協(xié)議4篇
- 2025版門窗工程承包合同書(智能門窗系統(tǒng)集成)4篇
- 2025年度個人合伙體育賽事運營合作協(xié)議4篇
- 二零二五年度電子商務(wù)平臺承包經(jīng)營合同范本8篇
- 2025年度出租車行業(yè)資產(chǎn)重組與股權(quán)轉(zhuǎn)讓合同4篇
- 企業(yè)年會攝影服務(wù)合同
- 電商運營管理制度
- 二零二五年度一手房購房協(xié)議書(共有產(chǎn)權(quán)房購房協(xié)議)3篇
- 2025年上半年上半年重慶三峽融資擔(dān)保集團股份限公司招聘6人易考易錯模擬試題(共500題)試卷后附參考答案
- 城市公共交通運營協(xié)議
- 內(nèi)燃副司機晉升司機理論知識考試題及答案
- 2024北京東城初二(上)期末語文試卷及答案
- 2024設(shè)計院與職工勞動合同書樣本
- 2024年貴州公務(wù)員考試申論試題(B卷)
- 電工高級工練習(xí)題庫(附參考答案)
- 村里干零工協(xié)議書
評論
0/150
提交評論