版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省惠州市高二數(shù)學第一學期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓與圓外切,則()A. B.C. D.2.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.3.已知圓C的圓心在直線上,且與直線相切于點,則圓C方程為()A. B.C. D.4.若橢圓對稱軸是坐標軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對5.甲、乙兩名同學同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館6.數(shù)列中,,,.當時,則n等于()A.2016 B.2017C.2018 D.20197.球O為三棱錐的外接球,和都是邊長為的正三角形,平面PBC平面ABC,則球的表面積為()A. B.C. D.8.如圖,P是橢圓第一象限上一點,A,B,C是橢圓與坐標軸的交點,O為坐標原點,過A作AN平行于直線BP交y軸于N,直線CP交x軸于M,直線BP交x軸于E.現(xiàn)有下列三個式子:①;②;③.其中為定值的所有編號是()A.①③ B.②③C.①② D.①②③9.在等比數(shù)列中,,,則等于A. B.C. D.或10.在四面體中,,,,且,,則等于()A. B.C. D.11.下列關于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點D.函數(shù)圖象的對稱軸方程為12.已知、是橢圓的兩個焦點,P為橢圓C上一點,且,若的面積為9,則的值為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.下圖是4個幾何體的展開圖,圖①是由4個邊長為3的正三角形組成;圖②是由四個邊長為3的正三角形和一個邊長為3的正方形組成;圖③是由8個邊長為3的正三角形組成;圖④是由6個邊長為3的正方形組成若直徑為4的球形容器(不計容器厚度)內(nèi)有一幾何體,則該幾何體的展開圖可以是______(填所有正確結(jié)論的番號)14.若實數(shù)、滿足,則的取值范圍為___________.15.已知過點作拋物線的兩條切線,切點分別為A、B,直線經(jīng)過拋物線C的焦點F,則___________16.在數(shù)列中,若,則該數(shù)列的通項公式__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的首項為2,公差為8.在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構成一個新的等差數(shù)列.(1)求數(shù)列的通項公式;(2)若,,,,是從中抽取的若干項按原來的順序排列組成的一個等比數(shù)列,,,令,求數(shù)列的前項和.18.(12分)已知拋物線E:過點Q(1,2),F(xiàn)為其焦點,過F且不垂直于x軸的直線l交拋物線E于A,B兩點,動點P滿足△PAB的垂心為原點O.(1)求拋物線E的方程;(2)求證:動點P在定直線m上,并求的最小值.19.(12分)已知三角形的內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.20.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值21.(12分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設與交于點,求證:三點共線.22.(10分)在二項式的展開式中,______.給出下列條件:①若展開式前三項的二項式系數(shù)的和等于46;②所有奇數(shù)項的二項式系數(shù)的和為256.試在上面兩個條件中選擇一個補充在上面的橫線上,并解答下列問題:(1)求展開式中二項式系數(shù)最大的項;(2)求展開式的常數(shù)項.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)兩圓外切關系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設,兩圓圓心分別為、,半徑分別為1、r,∴由外切關系知:,可得.故選:D.2、D【解析】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.3、C【解析】設出圓心坐標,根據(jù)垂直直線的斜率關系求得圓心坐標,結(jié)合兩點距離公式得半徑,即可得圓方程【詳解】設圓心為,則圓心與點的連線與直線l垂直,即,則點,所以圓心為,半徑,所以方程為,故選:C4、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標軸,則該橢圓的方程為或.故選:C.5、A【解析】設出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A6、B【解析】根據(jù)已知條件用逐差法求得的通項公式,再根據(jù)裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.7、B【解析】取中點為T,以及的外心為,的外心為,依據(jù)平面平面可知為正方形,然后計算外接球半徑,最后根據(jù)球表面積公式計算.【詳解】設中點為T,的外心為,的外心為,如圖由和均為邊長為的正三角形則和的外接圓半徑為,又因為平面PBC平面ABC,所以平面,可知且,過分別作平面、平面的垂線相交于點即為三棱錐的外接球的球心,且四邊形是邊長為的正方形,所以外接球半徑,則球的表面積為,故選:B8、D【解析】根據(jù)斜率的公式,可以得到的值是定值,然后結(jié)合已知逐一判斷即可.【詳解】設,所以有,,因此,所以有,,,,,,故,,.故選:D【點睛】關鍵點睛:利用斜率公式得到之間的關系是解題的關鍵.9、D【解析】∵為等比數(shù)列,∴,又∴為的兩個不等實根,∴∴或∴故選D10、B【解析】根據(jù)空間向量的線性運算即可求解.【詳解】解:由題知,故選:B.11、D【解析】化簡,利用正弦型函數(shù)的性質(zhì),依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數(shù)圖象的對稱中心為點,C選項錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項正確故選:D12、C【解析】根據(jù)橢圓定義,和條件列式,再通過變形計算求解.【詳解】由條件可知,,即,解得:.故選:C【點睛】本題考查橢圓的定義,焦點三角形的性質(zhì),重點考查轉(zhuǎn)化與變形,計算能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與4比較大小,即可確定答案.【詳解】若幾何體外接球球心為,半徑為,①由題設,幾何體為棱長為3的正四面體,為底面中心,則,,所以,可得,即,滿足要求;②由題設,幾何體為棱長為3的正四棱錐,為底面中心,則,所以,可得,即,不滿足要求;③由題設,幾何體為棱長為3的正八面體,其外接球直徑同棱長為3的正四棱錐,故不滿足要求;④由題設,幾何體為棱長為3的正方體,體對角線的長度即為外接球直徑,所以,不滿足要求;故答案為:①14、【解析】直接利用換元法以及基本不等式,求出結(jié)果【詳解】解:設,由于,所以,由于,(當且僅當時取等號)所以(當且僅當時取等號),(當且僅當時取等號),故,,所以,整理得:故的取值范圍為的取值范圍故答案為:15、64【解析】用字母進行一般化研究,先求出切點弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計算【詳解】設,點處的切線方程為聯(lián)立,得由,得即,解得所以點處的切線方程為,整理得同理,點處的切線方程為設為兩切線的交點,則所以在直線上即直線AB的方程為又直線AB經(jīng)過焦點所以,即聯(lián)立得所以所以本題中所以故答案為:64【點睛】結(jié)論點睛:過點作拋物線的兩條切線,切點弦的方程為16、【解析】由已知可得數(shù)列是以為首項,3為公比的等比數(shù)列,結(jié)合等比數(shù)列通項公式即可得解.【詳解】解:由在數(shù)列中,若,則數(shù)列是以為首項,為公比的等比數(shù)列,由等比數(shù)列通項公式可得,故答案為:.【點睛】本題考查了等比數(shù)列通項公式的求法,重點考查了運算能力,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題意在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構成一個新的等差數(shù)列,可知的公差,進而可求出其通項公式;(2)根據(jù)題意可得,進而得到,再代入中得,利用錯位相減即可求出前項和.【小問1詳解】由于等差數(shù)列的公差為8,在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構成一個新的等差數(shù)列,則的公差,的首項和首項相同為2,則數(shù)列的通項公式為.【小問2詳解】由于,是等比數(shù)列的前兩項,且,,則,則等比數(shù)列的公比為3,則,即,.①.②.①減去②得..18、(1);(2)證明見解析,的最小值為.【解析】(1)將點的坐標代入拋物線方程,由此求得的值,進而求得拋物線的方程.(2)設出直線的方程,聯(lián)立直線的方程與拋物線的方程,寫出韋達定理,設出直線的方程,聯(lián)立直線的方程求得的坐標,由此判斷出動點在定直線上.求得的表達式,利用基本不等式求得其最小值.【詳解】(1)將點坐標代入拋物線方程得,所以.(2)由(1)知拋物線的方程為,所以,設直線的方程為,設,由消去得,所以.由于為三角形的垂心,所以,所以直線的方程為,即.同理可求得直線的方程為.由,結(jié)合,解得,所以在定直線上.直線的方程為,到直線的距離為,到直線的距離為.所以,當且僅當時取等號.所以的最小值為.【點睛】本小題主要考查拋物線方程的求法,考查直線和拋物線的位置關系,考查拋物線中三角形面積的有關計算,屬于中檔題.19、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因,所以.因為角為鈍角,所以角為銳角,所以【小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=20、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標原點建立空間直角坐標系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因為平面,平面,平面,所以,且,因為,如圖所示,以為坐標原點建立空間直角坐標系,則,,,,,,,所以,,,所以;【小問2詳解】,設平面的法向量為,則,即,令,有,設平面的法向量為,則,即,令,有,設平面和平面的夾角為,,所以平面和平面的夾角的余弦值為21、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進而證明問題;(2)先證明平面,平面,進而證明點P在兩個平面的交線上,然后證得結(jié)論.【小問1詳解】連接分別是的中點,.在中,.所以四點共面.【小問2詳解】,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公會和斗魚之間合同范例
- 商場花卉租賃合同范例
- 公寓美甲店轉(zhuǎn)讓合同范例
- 合作餐飲協(xié)議合同范例
- 物業(yè)招商居間協(xié)議合同范例
- 唐山勞務合同范例定制
- 生產(chǎn)用品銷售合同范例
- 水泥合同違約合同范例
- 老人門衛(wèi)合同范例
- 拆遷領錢合同范例
- 中學科學教育活動三年發(fā)展規(guī)劃(2024-2026)
- 2025年高考語文復習備考復習策略講座
- 民事訴訟法試題庫
- 2024-2030年中國給水排水管行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 山東省濟南市2023-2024學年高一上學期1月期末考試數(shù)學試題 含解析
- 護理研究試題答案
- 營養(yǎng)與食品衛(wèi)生學智慧樹知到答案2024年溫州醫(yī)科大學
- 儲能行業(yè)-市場前景及投資研究報告-移動式儲能電源應用技術發(fā)展-培訓課件
- 藝人直播帶貨合同(坑位費-CPS)
- 【金融模擬交易實踐報告書3700字(論文)】
- 蔬菜批發(fā)合伙合同范本
評論
0/150
提交評論