版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
福建省泉州市南安市僑光中學2025屆數(shù)學高一上期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)則()A.- B.2C.4 D.112.已知冪函數(shù),在上單調(diào)遞增.設,,,則,,的大小關系是()A. B.C. D.3.已知函數(shù)(,,,)的圖象(部分)如圖所示,則的解析式是A. B.C. D.4.命題“,”的否定為()A., B.,C., D.,5.定義在實數(shù)集上的奇函數(shù)恒滿足,且時,,則()A. B.C.1 D.6.函數(shù)的零點個數(shù)為A.1 B.2C.3 D.47.已知集合,,則()A. B.C. D.8.已知是第三象限角,,則A. B.C. D.9.已知集合,,,則()A. B.C. D.10.若都是銳角,且,,則A. B.C.或 D.或二、填空題:本大題共6小題,每小題5分,共30分。11.某種候鳥每年都要隨季節(jié)的變化而進行大規(guī)模的遷徙,研究候鳥的專家發(fā)現(xiàn),該種鳥類的飛行速度(單位:m/s)與其耗氧量之間的關系為(其中、是實數(shù)).據(jù)統(tǒng)計,該種鳥類在耗氧量為80個單位時,其飛行速度為18m/s,則________;若這種候鳥飛行的速度不能低于60m/s,其耗氧量至少要________個單位.12.函數(shù)是冪函數(shù)且為偶函數(shù),則m的值為_________13.函數(shù)在區(qū)間上的單調(diào)性是______.(填寫“單調(diào)遞增”或“單調(diào)遞減”)14.方程的解為__________15.放射性物質(zhì)鐳的某種同位素,每經(jīng)過一年剩下的質(zhì)量是原來的.若剩下的質(zhì)量不足原來的一半,則至少需要(填整數(shù))____年.(參考數(shù)據(jù):,)16.在對某工廠甲乙兩車間某零件尺寸的調(diào)查中,采用樣本量比例分配的分層隨機抽樣,如果不知道樣本數(shù)據(jù),只知道抽取了甲車間10個零件,其尺寸的平均數(shù)和方差分別為12和4.5,抽取了乙車間30個零件,其平均數(shù)和方差分別為16和3.5,則該工廠這種零件的方差估計值為___________.(精確到0.1)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,(1)若,求向量與的夾角;(2)若函數(shù).求當時函數(shù)的值域18.已知函數(shù)求:的最小正周期;的單調(diào)增區(qū)間;在上的值域19.已知函數(shù)且(1)判斷函數(shù)的奇偶性;(2)判斷函數(shù)在上的單調(diào)性,并給出證明;(3)當時,函數(shù)值域是,求實數(shù)與自然數(shù)的值20.已知,且求的值;求的值21.如圖所示,在多面體中,四邊形是正方形,,為的中點.(1)求證:平面;(2)求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)分段函數(shù)的分段條件,先求得,進而求得的值,得到答案.【詳解】由題意,函數(shù),可得,所以.故選:C.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的分段條件,代入準確運算是解答的關鍵,著重考查運算與求解能力.2、A【解析】根據(jù)冪函數(shù)的概念以及冪函數(shù)的單調(diào)性求出,在根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性得到,根據(jù)冪函數(shù)的單調(diào)性得到,再結(jié)合偶函數(shù)可得答案.【詳解】根據(jù)冪函數(shù)的定義可得,解得或,當時,,此時滿足在上單調(diào)遞增,當時,,此時在上單調(diào)遞減,不合題意.所以.因為,,,且,所以,因為在上單調(diào)遞增,所以,又因為為偶函數(shù),所以,所以.故選:A【點睛】關鍵點點睛:掌握冪函數(shù)的概念和性質(zhì)、指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性是解題關鍵.3、C【解析】根據(jù)圖象可知,利用正弦型函數(shù)可求得;根據(jù)最大值和最小值可確定,利用及可求得,從而得到函數(shù)解析式.【詳解】由圖象可知,的最小正周期:又又,且,,即,本題正確選項:【點睛】本題考查根據(jù)圖象求解三角函數(shù)解析式的問題,關鍵是能夠明確由最大值和最小值確定;由周期確定;通常通過最值點來進行求解,屬于??碱}型.4、B【解析】利用含有量詞的命題的否定方法:先改變量詞,然后再否定結(jié)論,判斷即可.【詳解】解:由含有量詞的命題的否定方法:先改變量詞,然后再否定結(jié)論可得,命題“”的否定為:.故選:B.5、B【解析】根據(jù)函數(shù)奇偶性和等量關系,求出函數(shù)是周期為4的周期函數(shù),利用函數(shù)的周期性進行轉(zhuǎn)化求解即可【詳解】解:奇函數(shù)恒滿足,,即,則,即,即是周期為4的周期函數(shù),所以,故選:B6、C【解析】令,得到,畫出和的圖像,根據(jù)兩個函數(shù)圖像交點個數(shù),求得函數(shù)零點個數(shù).【詳解】令,得,畫出和的圖像如下圖所示,由圖可知,兩個函數(shù)圖像有個交點,也即有個零點.故選C.【點睛】本小題主要考查函數(shù)零點個數(shù)的判斷,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎題.7、A【解析】由已知得,因為,所以,故選A8、D【解析】利用條件以及同角三角函數(shù)的基本關系、以及三角函數(shù)在各個象限中的符號,求得sinα的值【詳解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故選D【點睛】本題主要考查同角三角函數(shù)的基本關系、以及三角函數(shù)在各個象限中的符號,屬于基礎題9、C【解析】解一元二次不等式求出集合,解不等式求出集合,再進行交集運算即可求解.【詳解】因為,,所以,故選:C.10、A【解析】先計算出,再利用余弦的和與差公式,即可.【詳解】因為都是銳角,且,所以又,所以,所以,,故選A.【點睛】本道題考查了同名三角函數(shù)關系和余弦的和與差公式,難度較大二、填空題:本大題共6小題,每小題5分,共30分。11、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范圍,由此得出候鳥在飛行時速度不低于時的最低耗氧量.【詳解】由題意,知,解得,所以,要使飛行速度不能低于,則有,即,即,解得,即,所以耗氧量至少要個單位.故答案為:6;10240【點睛】本題考查對數(shù)的應用,解題的關鍵就是要利用題中數(shù)據(jù)解出函數(shù)解析式,利用題意列出不等式進行求解.12、【解析】由函數(shù)是冪函數(shù),則,解出的值,再驗證函數(shù)是否為偶函數(shù),得出答案.【詳解】由函數(shù)是冪函數(shù),則,得或當時,函數(shù)不是偶函數(shù),所以舍去.當時,函數(shù)是偶函數(shù),滿足條件.故答案為:【點睛】本題考查冪函數(shù)的概念和冪函數(shù)的奇偶性,屬于基礎題.13、單調(diào)遞增【解析】求出函數(shù)單調(diào)遞增區(qū)間,再判斷作答.【詳解】函數(shù)的圖象對稱軸為,因此,函數(shù)的單調(diào)遞增區(qū)間為,而,所以函數(shù)在區(qū)間上的單調(diào)性是單調(diào)遞增.故答案為:單調(diào)遞增14、【解析】令,則解得:或即,∴故答案為15、【解析】設所需的年數(shù)為,由已知條件可得,解該不等式即可得結(jié)論.【詳解】設所需的年數(shù)為,由已知條件可得,則.因此,至少需要年.故答案為:.16、8【解析】設甲車間數(shù)據(jù)依次為,乙車間數(shù)據(jù)依次,根據(jù)兩個車間的平均數(shù)和方差分別求出所有數(shù)據(jù)之和以及所有數(shù)據(jù)平方和即可得解.【詳解】設甲車間數(shù)據(jù)依次為,乙車間數(shù)據(jù)依次,,,所以,,,所以這40個數(shù)據(jù)平均數(shù),方差=6.75≈6.8.所以可以判定該工廠這種零點的方差估計值為6.8故答案為:6.8三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先求出的坐標,再根據(jù)數(shù)量積、向量夾角的坐標公式計算可得;(2)根據(jù)數(shù)量積的坐標公式、二倍角公式以及輔助角公式化簡函數(shù)解析式,再根據(jù)的取值范圍,求出的范圍,最后根據(jù)正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為,當時,,又.所以,,,所以,因為,所以向量與的夾角為.【小問2詳解】解:因為,,所以,當時,,所以,則因此函數(shù)在時的值域為18、(1);(2),;(3).【解析】利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;利用正弦函數(shù)的單調(diào)性,求得的單調(diào)增區(qū)間;利用正弦函數(shù)的定義域和值域,求得在上的值域【詳解】函數(shù),故函數(shù)的最小正周期為.令,求得,可得函數(shù)的增區(qū)間為,在上,,,,即的值域為【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性,單調(diào)性,定義域和值域,屬于中檔題.單調(diào)性:根據(jù)y=sint和t=的單調(diào)性來研究,由得單調(diào)增區(qū)間;由得單調(diào)減區(qū)間.19、(1)奇函數(shù),證明見解析;(2)答案見解析,證明見解析;(3),.【解析】(1)利用奇偶性定義判斷奇偶性.(2)利用單調(diào)性定義,結(jié)合作差法、分類討論思想求的單調(diào)性.(3)由題設得且,結(jié)合(2)有在上遞減,結(jié)合函數(shù)的區(qū)間值域,求參數(shù)a、n即可.【小問1詳解】由題設有,可得函數(shù)定義域為,,所以為奇函數(shù).【小問2詳解】令,則,又,則,當時,,即,則在上遞增.當時,,即,則在上遞減.【小問3詳解】由,則,即,結(jié)合(2)知:在上遞減且值域為,要使在值域是,則且,即,所以,又,故.綜上,,【點睛】關鍵點點睛:第三問,注意,即有在上遞減,再根據(jù)區(qū)間值域求參數(shù).20、(1);(2)【解析】由.,利用同角三角函數(shù)關系式先求出,由此能求出的值利用同角三角函數(shù)關系式和誘導公式化簡為,再化簡為關于的齊次分式求值【詳解】(1)因為.,所以,故(2)【點睛】本題考查三角函數(shù)值的求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年廣東省廣州市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 淮北市和淮南市2025屆高三第一次質(zhì)量檢測(一模)地理試卷(含答案)
- 甘肅省隴南市(2024年-2025年小學六年級語文)部編版期末考試(上學期)試卷及答案
- 2024年組織毒活苗項目資金申請報告代可行性研究報告
- 2025年疾病預防控制及防疫服務項目申請報告模式
- 2025年電纜網(wǎng)設備項目規(guī)劃申請報告模范
- 廣東省肇慶市(2024年-2025年小學六年級語文)統(tǒng)編版質(zhì)量測試((上下)學期)試卷及答案
- 廣東省湛江市(2024年-2025年小學六年級語文)部編版隨堂測試(下學期)試卷及答案
- 學校工作失職檢討書(5篇)
- 2025年皮棉清理機項目申請報告
- 校本課程《典籍里的中國》教案
- CNAS-CV03-2022 溫室氣體 第三部分 溫室氣體聲明審定與核查規(guī)范和指南
- 四年級上冊信息技術教案-9演示文稿巧編輯 |人教版
- 2022年人力資源管理各專業(yè)領域必備知識技能
- 租賃(出租)物品清單表
- 提高聚氯乙烯卷材地面一次驗收合格率
- 【部編版】2022年語文七年級上:作文能力提升—謀篇布局(含答案)
- 甲型H1N1流感防治應急演練方案(1)
- 稀土高鐵鋁合金電力電纜應用參數(shù).
- LU和QR分解法解線性方程組
- 漏油器外殼的落料、拉深、沖孔級進模的設計【畢業(yè)論文絕對精品】
評論
0/150
提交評論