版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省永平縣第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓的左右兩焦點(diǎn)分別為,,過(guò)垂直于x軸的直線(xiàn)交C于A,B兩點(diǎn),,則橢圓C的離心率是()A. B.C. D.2.雙曲線(xiàn)的離心率為,焦點(diǎn)到漸近線(xiàn)的距離為,則雙曲線(xiàn)的焦距等于A. B.C. D.3.已知,是雙曲線(xiàn)C:(,)的兩個(gè)焦點(diǎn),過(guò)點(diǎn)與x軸垂直的直線(xiàn)與雙曲線(xiàn)C交于A、B兩點(diǎn),若是等腰直角三角形,則雙曲線(xiàn)C的離心率為()A. B.C. D.4.已知一組數(shù)據(jù)為:2,4,6,8,這4個(gè)數(shù)的方差為()A.4 B.5C.6 D.75.從0,2中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無(wú)重復(fù)數(shù)字的三位數(shù),其中偶數(shù)的個(gè)數(shù)為()A.24 B.18C.12 D.66.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為()A.海里 B.海里C.海里 D.海里7.圓C:的圓心坐標(biāo)和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和8.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.9.直線(xiàn)與直線(xiàn)平行,則兩直線(xiàn)間的距離為()A. B.C. D.10.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問(wèn)卷調(diào)查.已知高二被抽取的人數(shù)為人,那么高三被抽取的人數(shù)為()A. B.C. D.11.若方程表示焦點(diǎn)在y軸上的雙曲線(xiàn),則k的取值范圍是()A. B.C. D.12.已知直三棱柱中,,,,則異面直線(xiàn)與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右頂點(diǎn)分別為A,B,橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)為橢圓C的下頂點(diǎn),直線(xiàn)MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設(shè)點(diǎn)P,Q為橢圓C上位于x軸下方的兩點(diǎn),且,求四邊形面積的最大值.14.若圓C的方程為,點(diǎn)P是圓C上的動(dòng)點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則的最大值為_(kāi)_____15.已知方程,若此方程表示橢圓,則實(shí)數(shù)的取值范圍是________;若此方程表示雙曲線(xiàn),則實(shí)數(shù)的取值范圍是________.16.寫(xiě)出一個(gè)同時(shí)滿(mǎn)足下列條件①②③的圓C的標(biāo)準(zhǔn)方程:__________①圓C的圓心在第一象限;②圓C與x軸相切;③圓C與圓外切三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線(xiàn)段BF的中點(diǎn),,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.18.(12分)已知橢圓的離心率為,橢圓的上頂點(diǎn)到焦點(diǎn)的距離為.(1)求橢圓的方程;(2)若直線(xiàn)與橢圓相交于、兩點(diǎn)(、不是左、右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),求證:直線(xiàn)過(guò)定點(diǎn).19.(12分)已知橢圓的右焦點(diǎn)為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的左頂點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)(與軸不重合)交橢圓于兩點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn),若直線(xiàn)上存在另一點(diǎn),使.求證:三點(diǎn)共線(xiàn).20.(12分)有時(shí)候一些東西吃起來(lái)口味越好,對(duì)我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)分?jǐn)?shù)記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評(píng)價(jià)分?jǐn)?shù)88898078757165626052參考數(shù)據(jù):,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)分?jǐn)?shù)具有相關(guān)關(guān)系.試求出回歸方程(最后結(jié)果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現(xiàn)在他想從這些食品中隨機(jī)選取兩種購(gòu)買(mǎi),求他所選取的兩種食品至少有一種是美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)分?jǐn)?shù)為分以上的概率.21.(12分)在△中,內(nèi)角所對(duì)的邊分別為,已知(1)求角的大?。唬?)若的面積,求的值22.(10分)已知數(shù)列的前n項(xiàng)和為,且(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前n項(xiàng)和為,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過(guò)垂直于x軸的直線(xiàn)交橢圓C于A,B兩點(diǎn),,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.2、D【解析】不妨設(shè)雙曲線(xiàn)方程為,則,即設(shè)焦點(diǎn)為,漸近線(xiàn)方程為則又解得.則焦距為.選:D3、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線(xiàn)的離心率公式進(jìn)行求解即可.【詳解】由題意不妨設(shè),,當(dāng)時(shí),由,不妨設(shè),因?yàn)槭堑妊苯侨切?,所以有,或舍去,故選:B4、B【解析】根據(jù)數(shù)據(jù)的平均數(shù)和方差的計(jì)算公式,準(zhǔn)確計(jì)算,即可求解.【詳解】由平均數(shù)的計(jì)算公式,可得,所以這4個(gè)數(shù)的方差為故選:B.5、C【解析】根據(jù)題意,結(jié)合計(jì)數(shù)原理中的分步計(jì)算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無(wú)重復(fù)數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個(gè)數(shù)字為個(gè)位數(shù),有種可能,從1,3,5中選兩個(gè)數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個(gè)無(wú)重復(fù)數(shù)字的三位數(shù)為偶數(shù)的個(gè)數(shù)為.故選:C.6、A【解析】利用正弦定理可求解.【詳解】設(shè)甲驅(qū)逐艦、乙護(hù)衛(wèi)艦、航母所在位置分別為A,B,C,則,,.在△ABC中,由正弦定理得,即,解得,即甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為海里故選:A7、C【解析】先將方程化為一般形式,再根據(jù)公式計(jì)算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為故選:C8、B【解析】求出函數(shù)的定義域,解不等式可得出函數(shù)的單調(diào)遞增區(qū)間.【詳解】函數(shù)的定義域?yàn)?,由,可?因此,函數(shù)的單調(diào)遞增區(qū)間為.故選:B.9、B【解析】先根據(jù)直線(xiàn)平行求得,再根據(jù)公式可求平行線(xiàn)之間的距離.【詳解】由兩直線(xiàn)平行,得,故,當(dāng)時(shí),,,此時(shí),故兩直線(xiàn)平行時(shí)又之間的距離為,故選:B.10、C【解析】利用分層抽樣求出的值,進(jìn)而可求得高三被抽取的人數(shù).【詳解】由分層抽樣可得,可得,設(shè)高三所抽取的人數(shù)為,則,解得.故選:C.11、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點(diǎn)在y軸上的雙曲線(xiàn)所以,即故選:B12、C【解析】作出輔助線(xiàn),找到異面直線(xiàn)與所成角,進(jìn)而利用余弦定理及勾股定理求出各邊長(zhǎng),最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補(bǔ)成四棱柱,異面直線(xiàn)與所成角為,由勾股定理得:,,∴故選:C二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長(zhǎng)QF2交橢圓于N點(diǎn),連接,,設(shè)直線(xiàn),,.直線(xiàn)方程代入橢圓方程,應(yīng)用韋達(dá)定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計(jì)算出四邊形面積得結(jié)論【小問(wèn)1詳解】由題知:,,,又,∴橢圓.【小問(wèn)2詳解】延長(zhǎng)QF2交橢圓于N點(diǎn),連接,,如下圖所示:,∴設(shè)直線(xiàn),,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對(duì)稱(chēng)性得:,且,,∴四邊形面積的最大值為.14、##【解析】根據(jù)點(diǎn)與圓的位置關(guān)系求得正確答案.【詳解】圓的方程可化為,所以圓心為,半徑.由于,所以原點(diǎn)在圓外,所以最大值為.故答案為:15、①.②.【解析】分別根據(jù)橢圓、雙曲線(xiàn)的標(biāo)準(zhǔn)方程的特征建立不等式即可求解.【詳解】當(dāng)方程表示橢圓時(shí),則有且,所以的取值范圍是;當(dāng)方程表示雙曲線(xiàn)時(shí),則有或,所以的取值范圍是.故答案為:;16、(答案不唯一,但圓心坐標(biāo)需滿(mǎn)足,)【解析】首先設(shè)圓的圓心和半徑,根據(jù)條件得到關(guān)于的方程組,即可求解.【詳解】設(shè)圓心坐標(biāo)為,由①可知,半徑為,由②③可知,整理可得,當(dāng)時(shí),,,所以其中一個(gè)同時(shí)滿(mǎn)足條件①②③的圓的標(biāo)準(zhǔn)方程是.故答案為:(答案不唯一,但圓心坐標(biāo)需滿(mǎn)足,)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內(nèi)角和可知即,又因?yàn)?,再根?jù)面面垂直的判定定理,即可證明結(jié)果;(2)取BC中點(diǎn)O,由(1)得:平面BCGF,,以O(shè)為原點(diǎn),OB,OH,OA所在直線(xiàn)分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,利用空間向量求二面角,即可求出結(jié)果.【小問(wèn)1詳解】證明:(1)在中,由正弦定理知:解得因?yàn)?,所以又因?yàn)?,所以所以又因?yàn)?,所以直線(xiàn)平面ABC又因?yàn)槠矫鍮CGF所以平面平面BCGF【小問(wèn)2詳解】解:取BC中點(diǎn)O,連結(jié)OA,OH,由(1)得:平面BCGF,則以O(shè)為原點(diǎn),OB,OH,OA所在直線(xiàn)分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系在中,則,,平面ABC的一個(gè)法向量為設(shè)平面ACH的一個(gè)法向量為因?yàn)?,所以,取,則設(shè)平面APD與平面PDF夾角為,所以.18、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)已知條件求出、、的值,可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)、,將直線(xiàn)的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出關(guān)于、所滿(mǎn)足的等式,然后化簡(jiǎn)直線(xiàn)的方程,即可求得直線(xiàn)所過(guò)定點(diǎn)的坐標(biāo).【小問(wèn)1詳解】解:橢圓上頂點(diǎn)到焦點(diǎn)距離,又橢圓離心率為,故,,因此,橢圓方程為.【小問(wèn)2詳解】解:設(shè)、,由題意可知且,橢圓的右頂點(diǎn)為,則,,因?yàn)橐詾橹睆降膱A過(guò)橢圓的右頂點(diǎn),所以有,則,即,聯(lián)立,,即,①由韋達(dá)定理得,,所以,,化簡(jiǎn)得,即或,均滿(mǎn)足①式.當(dāng)時(shí),直線(xiàn),恒過(guò)定點(diǎn),舍去;當(dāng)時(shí),直線(xiàn),恒過(guò)定點(diǎn).綜上所述,直線(xiàn)過(guò)定點(diǎn).【點(diǎn)睛】方法點(diǎn)睛:求解直線(xiàn)過(guò)定點(diǎn)問(wèn)題常用方法如下:(1)“特殊探路,一般證明”:即先通過(guò)特殊情況確定定點(diǎn),再轉(zhuǎn)化為有方向、有目的的一般性證明;(2)“一般推理,特殊求解”:即設(shè)出定點(diǎn)坐標(biāo),根據(jù)題設(shè)條件選擇參數(shù),建立一個(gè)直線(xiàn)系或曲線(xiàn)的方程,再根據(jù)參數(shù)的任意性得到一個(gè)關(guān)于定點(diǎn)坐標(biāo)的方程組,以這個(gè)方程組的解為坐標(biāo)的點(diǎn)即為所求點(diǎn);(3)求證直線(xiàn)過(guò)定點(diǎn),常利用直線(xiàn)的點(diǎn)斜式方程或截距式來(lái)證明.19、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長(zhǎng)即可計(jì)算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線(xiàn)PA的方程并求出點(diǎn)M的坐標(biāo),求出點(diǎn)N的坐標(biāo),再利用斜率推理作答.【小問(wèn)1詳解】依題意,橢圓的左焦點(diǎn),由橢圓定義得:即,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】由(1)知,,直線(xiàn)不垂直y軸,設(shè)直線(xiàn)方程為,,由消去x得:,則,,直線(xiàn)的斜率,直線(xiàn)的方程:,而直線(xiàn),即,直線(xiàn)的斜率,而,即,直線(xiàn)的斜率,直線(xiàn)的方程:,則點(diǎn),直線(xiàn)的斜率,直線(xiàn)的斜率,,而,即,所以三點(diǎn)共線(xiàn).【點(diǎn)睛】思路點(diǎn)睛:解答直線(xiàn)與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線(xiàn)的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系20、(1)(2)【解析】(1)首先求出、、,即可求出,從而求出回歸直線(xiàn)方程;(2)由表可知某人只能接受的食品共有種,評(píng)價(jià)為分以上的有種可記為,,另外種記為,,,,用列舉法列出所有的可能結(jié)果,再根據(jù)古典概型的概率公式計(jì)算可得;【小問(wèn)1詳解】解:設(shè)所求的回歸方程為,由,,,,所求的回歸方程為:.【小問(wèn)2詳解】解:由表可知某人只能接受的食品共有種,其中美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)為分以上的有種可記為,,另外種記為,,,.任選兩種分別為:,,,,,,,,,,,,,,,共15個(gè)基本事件.記“所選取的兩種食品至少有一種是美食家以百分制給出的對(duì)此食品口味的評(píng)價(jià)分?jǐn)?shù)為分以上”為事件,則事件包含,,,,,,,,共個(gè)基本事件,故事件發(fā)生的概率為.21、(1);(2)【解析】(1)由正弦定理,將條件中的邊化成角,可得,進(jìn)而可得的值;(2)由三角形面積公式可得,再由余弦定理可得,得最后結(jié)論試題解析:(1),又∴又得(2)由,∴又得,∴得考點(diǎn):正弦定理;余弦定理【易錯(cuò)點(diǎn)睛】解三角形問(wèn)題的兩重性:①作為三角形問(wèn)題,它必須要用到三角形的內(nèi)角和定理,正弦、余弦
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物業(yè)公司保安員夜間值班與休息合同
- 二零二五年度電梯井施工與電梯設(shè)備保養(yǎng)合同
- 2025年度幼兒園招生加盟與品牌轉(zhuǎn)讓合作協(xié)議
- 二零二五年度情感關(guān)系建立合同
- 二零二五年度2025年門(mén)面房租賃與社區(qū)配套服務(wù)合同
- 二零二五年度精裝修公寓房購(gòu)買(mǎi)與戶(hù)外休閑設(shè)施使用合同3篇
- 二零二五版奶粉生產(chǎn)廢棄物資源化利用服務(wù)合同范本頁(yè)22篇
- 2025年度影視基地場(chǎng)地租賃合同及影視制作服務(wù)協(xié)議3篇
- 二零二五版電子商務(wù)SET協(xié)議安全風(fēng)險(xiǎn)評(píng)估與風(fēng)險(xiǎn)控制合同3篇
- 二零二五版淋浴房市場(chǎng)推廣與廣告投放合同3篇
- 2024山西廣播電視臺(tái)招聘專(zhuān)業(yè)技術(shù)崗位編制人員20人歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 新材料行業(yè)系列深度報(bào)告一:新材料行業(yè)研究框架
- 人教版小學(xué)英語(yǔ)各冊(cè)單詞表(帶英標(biāo))
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末考試數(shù)學(xué)試題
- 鄉(xiāng)村治理中正式制度與非正式制度的關(guān)系解析
- 智能護(hù)理:人工智能助力的醫(yī)療創(chuàng)新
- 國(guó)家中小學(xué)智慧教育平臺(tái)培訓(xùn)專(zhuān)題講座
- 5G+教育5G技術(shù)在智慧校園教育專(zhuān)網(wǎng)系統(tǒng)的應(yīng)用
- VI設(shè)計(jì)輔助圖形設(shè)計(jì)
- 淺談小學(xué)勞動(dòng)教育的開(kāi)展與探究 論文
- 2023年全國(guó)4月高等教育自學(xué)考試管理學(xué)原理00054試題及答案新編
評(píng)論
0/150
提交評(píng)論