版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山西省忻州一中、臨汾一中、精英中學、鄂爾多斯一中數學高三上期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,是方程的兩個不等實數根,記().下列兩個命題()①數列的任意一項都是正整數;②數列存在某一項是5的倍數.A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤2.若集合,則=()A. B. C. D.3.若變量,滿足,則的最大值為()A.3 B.2 C. D.104.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B5.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數的值為()A.1 B.2 C.-1 D.-26.復數,是虛數單位,則下列結論正確的是A. B.的共軛復數為C.的實部與虛部之和為1 D.在復平面內的對應點位于第一象限7.設,,,則、、的大小關系為()A. B. C. D.8.設,且,則()A. B. C. D.9.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦的植物,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.10.已知向量,,若,則與夾角的余弦值為()A. B. C. D.11.設,為非零向量,則“存在正數,使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件12.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.14.已知復數對應的點位于第二象限,則實數的范圍為______.15.已知復數滿足(為虛數單位),則復數的實部為____________.16.下圖是一個算法流程圖,則輸出的S的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.18.(12分)已知函數存在一個極大值點和一個極小值點.(1)求實數a的取值范圍;(2)若函數的極大值點和極小值點分別為和,且,求實數a的取值范圍.(e是自然對數的底數)19.(12分)設首項為1的正項數列{an}的前n項和為Sn,數列的前n項和為Tn,且,其中p為常數.(1)求p的值;(2)求證:數列{an}為等比數列;(3)證明:“數列an,2xan+1,2yan+2成等差數列,其中x、y均為整數”的充要條件是“x=1,且y=2”.20.(12分)在平面直角坐標系中,點,直線的參數方程為為參數),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.21.(12分)已知函數(I)若討論的單調性;(Ⅱ)若,且對于函數的圖象上兩點,存在,使得函數的圖象在處的切線.求證:.22.(10分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用韋達定理可得,,結合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數根,所以,,因為,所以,即當時,數列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數列的任意一項都是正整數,故①正確;若數列存在某一項是5的倍數,則此項個位數字應當為0或5,由,,依次計算可知,數列中各項的個位數字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數列中不存在個位數字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數列遞推公式的推導,考查數列性質的應用,考查學生的綜合分析以及計算能力.2、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.3、D【解析】
畫出約束條件的可行域,利用目標函數的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標分別為,目標函數的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規(guī)劃問題,考查數形結合思想,屬于中檔題.4、C【解析】試題分析:集合考點:集合間的關系5、D【解析】
由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.6、D【解析】
利用復數的四則運算,求得,在根據復數的模,復數與共軛復數的概念等即可得到結論.【詳解】由題意,則,的共軛復數為,復數的實部與虛部之和為,在復平面內對應點位于第一象限,故選D.【點睛】復數代數形式的加減乘除運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化,其次要熟悉復數相關基本概念,如復數的實部為、虛部為、模為、對應點為、共軛為.7、D【解析】
因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.8、C【解析】
將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.9、C【解析】
由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.10、B【解析】
直接利用向量的坐標運算得到向量的坐標,利用求得參數m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數量積的應用,考查運算求解能力以及化歸與轉化思想.11、D【解析】
充分性中,由向量數乘的幾何意義得,再由數量積運算即可說明成立;必要性中,由數量積運算可得,不一定有正數,使得,所以不成立,即可得答案.【詳解】充分性:若存在正數,使得,則,,得證;必要性:若,則,不一定有正數,使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數量積的運算,向量數乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.12、C【解析】
由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質及體積求法,屬于中檔題.14、【解析】
由復數對應的點,在第二象限,得,且,從而求出實數的范圍.【詳解】解:∵復數對應的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復數與復平面內對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.15、【解析】
利用復數的概念與復數的除法運算計算即可得到答案.【詳解】,所以復數的實部為2.故答案為:2【點睛】本題考查復數的除法運算,考查學生的基本計算能力,是一道基礎題.16、【解析】
根據流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【點睛】本題考查算法流程圖,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(答案不唯一)(2)證明見解析【解析】
(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因為,所以.所以,即.因為,所以,因為,所以,所以.【點睛】考查不等式的證明,考查不等式的性質的應用.18、(1);(2).【解析】
(1)首先對函數求導,根據函數存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據求出實數a的取值范圍.【詳解】(1)函數的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數,由,得,故實數a的取值范圍是.【點睛】本題主要考查了利用導數研究函數的極值點和單調性,利用函數單調性證明不等式,屬于難題.19、(1)p=2;(2)見解析(3)見解析【解析】
(1)取n=1時,由得p=0或2,計算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設an,2xan+1,2yan+2成等差數列,其中x、y均為整數,計算化簡得2x﹣2y﹣2=1,設k=x﹣(y﹣2),計算得到k=1,得到答案.【詳解】(1)n=1時,由得p=0或2,若p=0時,,當n=2時,,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當p=2時,①,則②,②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因為,所以數列{an}是等比數列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數列;必要性:假設an,2xan+1,2yan+2成等差數列,其中x、y均為整數,又,所以,化簡得2x﹣2y﹣2=1,顯然x>y﹣2,設k=x﹣(y﹣2),因為x、y均為整數,所以當k≥2時,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故當k=1,且當x=1,且y﹣2=0時上式成立,即證.【點睛】本題考查了根據數列求參數,證明等比數列,充要條件,意在考查學生的綜合應用能力.20、(1);(2).【解析】
(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθ=x,ρsinθ=y(tǒng),ρ2=x2+y2可得曲線C的直角坐標方程;(2)聯(lián)立直線l的參數方程與x2=4y由韋達定理以及參數的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標方程為:x2=4y.(2)聯(lián)立直線l的參數方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設A,B兩點對應的參數分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.21、(1)見解析(2)見證明【解析】
(1)對函數求導,分別討論,以及,即可得出結果;(2)根據題意,由導數幾何意義得到,將證明轉化為證明即可,再令,設,用導數方法判斷出的單調性,進而可得出結論成立.【詳解】(1)解:易得,函數的定義域為,,令,得或.①當時,時,,函數單調遞減;時,,函數單調遞增.此時,的減區(qū)間為,增區(qū)間為.②當時,時,,函數單調遞減;或時,,函數單調遞增.此時,的減區(qū)間為,增區(qū)間為,.③當時,時,,函數單調遞增;此時,的減區(qū)間為.綜上,當時,的減區(qū)間為,增區(qū)間為:當時,的減區(qū)間為,增區(qū)間為.;當時,增區(qū)間為.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學2024-2025學年度教學計劃
- 長沙環(huán)境保護職業(yè)技術學院《天線理論與技術》2023-2024學年第一學期期末試卷
- 云南交通運輸職業(yè)學院《工程軟件應用》2023-2024學年第一學期期末試卷
- 業(yè)務操作-房地產經紀人《業(yè)務操作》深度自測卷2
- 人教版三年級下冊數學第四單元筆算乘法同步練習(含答案)
- 四川省綿陽市綿陽中學2024-2025學年高一上學期1月選拔測試(期末)數學試題(含答案)
- 二零二五年建筑外墻保溫材料研發(fā)與市場分析合作協(xié)議3篇
- 二零二五版地產項目可持續(xù)發(fā)展策劃與管理合同3篇
- 二零二五版房屋買賣合同貸款服務協(xié)議書3篇
- 二零二五年度煤炭買賣合同書2篇
- 顧客滿意度評價表范文
- 細胞骨架(細胞生物學)課件
- 電磁閥培訓(精選)課件
- A彌漫大b細胞淋巴瘤護理查房
- 維保移交協(xié)議范本
- 初一上學期期末測試卷英語
- 上海沃陸變頻器VL600型變頻器說明書概要
- 2023年高考物理一輪復習:拋體運動與圓周運動(附答案解析)
- VRV空調技術要求和質量標準
- 第二講VSP地震勘探
- 干砌石護坡工程施工組織設計方案
評論
0/150
提交評論