![山西省山大附中2025屆高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view9/M00/34/0C/wKhkGWcnsWOAZ1dAAAF94H6tARs999.jpg)
![山西省山大附中2025屆高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view9/M00/34/0C/wKhkGWcnsWOAZ1dAAAF94H6tARs9992.jpg)
![山西省山大附中2025屆高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view9/M00/34/0C/wKhkGWcnsWOAZ1dAAAF94H6tARs9993.jpg)
![山西省山大附中2025屆高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view9/M00/34/0C/wKhkGWcnsWOAZ1dAAAF94H6tARs9994.jpg)
![山西省山大附中2025屆高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view9/M00/34/0C/wKhkGWcnsWOAZ1dAAAF94H6tARs9995.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省山大附中2025屆高一數(shù)學第一學期期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.與2022°終邊相同的角是()A. B.C.222° D.142°2.下列函數(shù)中,是奇函數(shù)且在其定義域內單調遞增的是A. B.C. D.3.已知函數(shù)與在下列區(qū)間內同為單調遞增的是()A. B.C. D.4.函數(shù)的圖象如圖所示,則函數(shù)的零點為()A. B.C. D.5.已知實數(shù)集為,集合,,則A. B.C. D.6.已知角的頂點在原點,始邊與軸的正半軸重合,終邊經過點,則()A. B.C. D.7.函數(shù)的單調減區(qū)間為()A. B.C. D.8.已知集合A={1,2,3,4},B={x∈R|0<x-1<3},則A∩B=()A. B.{2,3}C.{1,2,3} D.{2,3,4}9.若,則()A B.C. D.10.設都是非零向量,下列四個條件中,一定能使成立的是()A. B.//C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)若方程恰有三個實數(shù)根,則實數(shù)的取值范圍是_______.12.冪函數(shù)的圖象過點,則___________.13.已知是第四象限角且,則______________.14.若冪函數(shù)的圖象經過點,則的值等于_________.15.在對某工廠甲乙兩車間某零件尺寸的調查中,采用樣本量比例分配的分層隨機抽樣,如果不知道樣本數(shù)據(jù),只知道抽取了甲車間10個零件,其尺寸的平均數(shù)和方差分別為12和4.5,抽取了乙車間30個零件,其平均數(shù)和方差分別為16和3.5,則該工廠這種零件的方差估計值為___________.(精確到0.1)16.已知水平放置的△ABC按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=2,∠B'A'C'=90°,則原△ABC的面積為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的部分圖象如圖所示()求函數(shù)的解析式()求函數(shù)在區(qū)間上的最大值和最小值18.如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥AC,AB⊥BC,,D為線段AC的中點,E為線段PC上一點.(1)求證:平面BDE⊥平面PAC;(2)求二面角P-BC-A的平面角的大小.19.對于函數(shù)(1)判斷的單調性,并用定義法證明;(2)是否存在實數(shù)a使函數(shù)為奇函數(shù)?若存在,求出a的值;若不存在,說明理由20.已知圓:關于直線:對稱的圖形為圓.(1)求圓的方程;(2)直線:,與圓交于,兩點,若(為坐標原點)面積為,求直線的方程.21.已知二次函數(shù)圖象經過原點,函數(shù)是偶函數(shù),方程有兩相等實根.(1)求的解析式;(2)若對任意,恒成立,求實數(shù)的取值范圍;(3)若函數(shù)與的圖像有且只有一個公共點,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】終邊相同的角,相差360°的整數(shù)倍,據(jù)此即可求解.【詳解】∵2022°=360°×5+222°,∴與2022°終邊相同的角是222°.故選:C.2、C【解析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調性,綜合即可得答案【詳解】解:根據(jù)題意,依次分析選項:對于A,y=sinx,是正弦函數(shù),在定義域上不是增函數(shù);不符合題意;對于B,y=tanx,為正切函數(shù),在定義域上不是增函數(shù),不符合題意;對于C,y=x3,是奇函數(shù)且在其定義域內單調遞增,符合題意;對于D,y=ex為指數(shù)函數(shù),不是奇函數(shù),不符合題意;故選C【點睛】本題考查函數(shù)的奇偶性與單調性的判定,關鍵是掌握常見函數(shù)的奇偶性與單調性3、D【解析】根據(jù)正余弦函數(shù)的單調性,即可得到結果.【詳解】由正弦函數(shù)的單調性可知,函數(shù)在上單調遞增;由余弦函數(shù)的單調性可知,函數(shù)在上單調遞增;所以函數(shù)與在下列區(qū)間內同為單調遞增的是.故選:D.4、B【解析】根據(jù)函數(shù)的圖象和零點的定義,即可得出答案.【詳解】解:根據(jù)函數(shù)的圖象,可知與軸的交點為,所以函數(shù)的零點為2.故選:B.5、C【解析】分析:先求出,再根據(jù)集合的交集運算,即可求解結果.詳解:由題意,集合,所以,又由集合,所以,故選C.點睛:本題主要考查了集合的混合運算,熟練掌握集合的交集、并集、補集的運算是解答的關鍵,著重考查了推理與運算能力.6、D【解析】先利用三角函數(shù)的恒等變換確定點P的坐標,再根據(jù)三角函數(shù)的定義求得答案.【詳解】,,即,則,故選:D.7、A【解析】先求得函數(shù)的定義域,利用二次函數(shù)的性質求得函數(shù)的單調區(qū)間,結合復合函數(shù)單調性的判定方法,即可求解.【詳解】由不等式,即,解得,即函數(shù)的定義域為,令,可得其圖象開口向下,對稱軸的方程為,當時,函數(shù)單調遞增,又由函數(shù)在定義域上為單調遞減函數(shù),結合復合函數(shù)的單調性的判定方法,可得函數(shù)的單調減區(qū)間為.故選:A.8、B【解析】求解一元一次不等式化簡,再由交集運算得答案【詳解】解:,2,3,,,,2,3,,故選:9、C【解析】將式子先利用二倍角公式和平方關系配方化簡,然后增添分母(),進行齊次化處理,化為正切的表達式,代入即可得到結果【詳解】將式子進行齊次化處理得:故選:C【點睛】易錯點睛:本題如果利用,求出的值,可能還需要分象限討論其正負,通過齊次化處理,可以避開了這一討論10、D【解析】由得若,即,則向量共線且方向相反,因此當向量共線且方向相反時,能使成立,本題選擇D選項.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】令f(t)=2,解出t,則f(x)=t,討論k的符號,根據(jù)f(x)的函數(shù)圖象得出t的范圍即可【詳解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)當k=0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1無解,即f(f(x))﹣2=0無解,不符合題意;(2)當k>0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1無解,f(x)無解,即f(f(x))﹣2=0無解,不符合題意;(3)當k<0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k綜上,k的取值范圍是(﹣1,]故答案為(﹣1,]【點睛】本題考查了函數(shù)零點個數(shù)與函數(shù)圖象的關系,數(shù)形結合思想,屬于中檔題12、【解析】將點的坐標代入解析式可解得結果.【詳解】因為冪函數(shù)的圖象過點,所以,解得.故答案為:13、【解析】直接由平方關系求解即可.【詳解】由是第四象限角,可得.故答案為:.14、【解析】設出冪函數(shù),將點代入解析式,求出解析式即可求解.【詳解】設,函數(shù)圖像經過,可得,解得,所以,所以.故答案為:【點睛】本題考查了冪函數(shù)的定義,考查了基本運算求解能力,屬于基礎題.15、8【解析】設甲車間數(shù)據(jù)依次為,乙車間數(shù)據(jù)依次,根據(jù)兩個車間的平均數(shù)和方差分別求出所有數(shù)據(jù)之和以及所有數(shù)據(jù)平方和即可得解.【詳解】設甲車間數(shù)據(jù)依次為,乙車間數(shù)據(jù)依次,,,所以,,,所以這40個數(shù)據(jù)平均數(shù),方差=6.75≈6.8.所以可以判定該工廠這種零點的方差估計值為6.8故答案為:6.816、8【解析】根據(jù)“斜二測畫法”原理還原出△ABC,利用邊長對應關系計算原△ABC的面積即可詳解】根據(jù)“斜二測畫法”原理,還原出△ABC,如圖所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面積為SBC×OA4×4=8故答案為8【點睛】本題考查了斜二測畫法中原圖和直觀圖面積的計算問題,是基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、();(),【解析】(1)由圖可知,,得,所以;(2)當時,,利用原始圖象,可知,試題解析:()由圖可知,∴,∴,,∵,∴∵,∴∴()當時,當,即時,當時,時,18、(1)見解析(2)【解析】(1)由線面垂直的判定定理可得平面,從而可得,證明,再根據(jù)線面垂直的判定定理可得平面PAC,再根據(jù)面面垂直的判定定理即可得證;(2)由線面垂直的性質可得,再根據(jù)線面垂直的判定定理可得平面,則有,從而可得即為二面角P-BC-A的平面角,從而可得出答案.【小問1詳解】證明:因為PA⊥AB,PA⊥AC,,所以平面,又因平面,所以,因為D為線段AC的中點,,所以,又,所以平面PAC,又因為平面BDE,所以平面BDE⊥平面PAC;【小問2詳解】解:由(1)得平面,又平面,所以,因為AB⊥BC,,所以平面,因為平面,所以,所以即為二面角P-BC-A平面角,中,,所以,所以,即二面角P-BC-A的平面角的大小為.19、(1)在R上單調遞增;(2)存在使得為奇函數(shù).【解析】(1)利用函數(shù)單調性的定義證明;(2)利用函數(shù)奇偶性的定義求參數(shù)【小問1詳解】證明:任取且,則又且,即在R上單調遞增【小問2詳解】若為R上為奇函數(shù),則對任意的都有20、(1),(2)【解析】(1)設圓的圓心為,則由題意得,求出的值,從而可得所求圓的方程;(2)設圓心到直線:的距離為,原點到直線:的距離為,則有,,再由的面積為,列方程可求出的值,進而可得直線方程【詳解】解:(1)設圓的圓心為,由題意可得,則的中點坐標為,因為圓:關于直線:對稱的圖形為圓,所以,解得,因為圓和圓半徑相同,即,所以圓的方程為,(2)設圓心到直線:的距離為,原點到直線:的距離為,則,,所以所以,解得,因為,所以,所以直線的方程為【點睛】關鍵點點睛:此題考查圓的方程的求法,考查直線與圓的位置關系,解題的關鍵是利用點到直線的距離公式表示出圓心到直線的距離為,原點到直線的距離為,再表示出,從而由的面積為,得,進而可求出的值,問題得到解決,考查計算能力,屬于中檔題21、(1);(2);(3).【解析】(1)運用待定系數(shù)法,結合題目條件計算得,(2)分離參量,計算在上的最大值(3)轉化為有且只有一個實數(shù)根,換元,關于的方程只有一個正實根,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 港口柴油罐車裝卸合同
- 二零二五年度寶石專家珠寶店品牌推廣合同
- 2025年度辦公用品店租賃與品牌授權合同
- 產品研發(fā)流程規(guī)范作業(yè)指導書
- 酒水購銷合同年
- 軟件公司保密協(xié)議書
- 委托房屋買賣合同
- 建筑裝飾工程門窗施工合同
- 虛擬現(xiàn)實技術專利申請合同
- 展覽會管理合同協(xié)議
- 中國氫內燃機行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2024版)
- 《自然保護區(qū)劃分》課件
- 2025年普通卷釘項目可行性研究報告
- 2024年湖南高速鐵路職業(yè)技術學院高職單招數(shù)學歷年參考題庫含答案解析
- 上海鐵路局招聘筆試沖刺題2025
- 2025年建筑施工春節(jié)節(jié)后復工復產工作專項方案
- 學校食堂餐廳管理者食堂安全考試題附答案
- 《商用車預見性巡航系統(tǒng)技術規(guī)范》
- 國旗班指揮刀訓練動作要領
- 春季安全開學第一課
- 植物芳香油的提取 植物有效成分的提取教學課件
評論
0/150
提交評論