版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省師范大學(xué)附中2024屆高三第二輪復(fù)習(xí)測(cè)試卷數(shù)學(xué)試題(六)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過(guò)的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.2.設(shè)全集,集合,.則集合等于()A. B. C. D.3.已知定義在上的函數(shù)的周期為4,當(dāng)時(shí),,則()A. B. C. D.4.已知數(shù)列中,,(),則等于()A. B. C. D.25.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件6.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長(zhǎng)交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.7.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽(yáng)馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.8.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)9.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)10.若的二項(xiàng)展開(kāi)式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.711.已知角的終邊經(jīng)過(guò)點(diǎn),則A. B.C. D.12.已知向量,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.14.已知點(diǎn)為雙曲線的右焦點(diǎn),兩點(diǎn)在雙曲線上,且關(guān)于原點(diǎn)對(duì)稱,若,設(shè),且,則該雙曲線的焦距的取值范圍是________.15.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為_(kāi)_________.16.(5分)在平面直角坐標(biāo)系中,過(guò)點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長(zhǎng)等于____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩陣,.求矩陣;求矩陣的特征值.18.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個(gè)實(shí)數(shù)根,且,證明:.19.(12分)數(shù)列滿足,,其前n項(xiàng)和為,數(shù)列的前n項(xiàng)積為.(1)求和數(shù)列的通項(xiàng)公式;(2)設(shè),求的前n項(xiàng)和,并證明:對(duì)任意的正整數(shù)m、k,均有.20.(12分)已知圓上有一動(dòng)點(diǎn),點(diǎn)的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點(diǎn).(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,直線與軸分別交于兩點(diǎn),求證:線段的中點(diǎn)為定點(diǎn),并求出面積的最大值.21.(12分)如圖,在正四棱錐中,,點(diǎn)、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長(zhǎng).22.(10分)如圖,三棱柱的所有棱長(zhǎng)均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用換元法化簡(jiǎn)解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對(duì)稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B【點(diǎn)睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識(shí).2、A【解析】
先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.【點(diǎn)睛】本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.3、A【解析】
因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對(duì)數(shù)恒等式和對(duì)數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時(shí),,,,.故選:A.【點(diǎn)睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對(duì)數(shù)的運(yùn)算性質(zhì),屬于中檔題.4、A【解析】
分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問(wèn)題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數(shù)列是以3為周期的周期數(shù)列,
,
,
故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.5、A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力.6、B【解析】
設(shè),則,,因?yàn)?,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.7、B【解析】
利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽(yáng)馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).8、D【解析】
求解一元二次不等式化簡(jiǎn)A,求解對(duì)數(shù)不等式化簡(jiǎn)B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.9、D【解析】
求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補(bǔ)集的定義寫(xiě)出運(yùn)算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點(diǎn)睛】該題考查的是有關(guān)集合的問(wèn)題,涉及到的知識(shí)點(diǎn)有函數(shù)的定義域,函數(shù)的值域,集合的運(yùn)算,屬于基礎(chǔ)題目.10、B【解析】
先化簡(jiǎn)的二項(xiàng)展開(kāi)式中第項(xiàng),然后直接求解即可【詳解】的二項(xiàng)展開(kāi)式中第項(xiàng).令,則,∴,∴(舍)或.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式問(wèn)題,屬于基礎(chǔ)題11、D【解析】因?yàn)榻堑慕K邊經(jīng)過(guò)點(diǎn),所以,則,即.故選D.12、A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)?,故或,解得故答案為?【點(diǎn)睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.14、【解析】
設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點(diǎn)睛】本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運(yùn)算能力,是一道中檔題.15、【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(16、【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、;,.【解析】
由題意,可得,利用矩陣的知識(shí)求解即可.矩陣的特征多項(xiàng)式為,令,求出矩陣的特征值.【詳解】設(shè)矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項(xiàng)式為,令,解得,,即矩陣的兩個(gè)特征值為,.【點(diǎn)睛】本題考查矩陣的知識(shí)點(diǎn),屬于??碱}.18、(Ⅰ);(Ⅱ);(Ⅲ)證明見(jiàn)解析【解析】
(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(Ⅱ)求導(dǎo)分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點(diǎn)處的切線方程為.(Ⅱ)設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當(dāng)時(shí),此時(shí),且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因?yàn)?,故設(shè)的解為,因?yàn)?故.所以在遞減,在遞增.因?yàn)榉匠逃袃蓚€(gè)實(shí)數(shù)根,故.結(jié)合(Ⅰ)(Ⅱ)有,在上恒成立.設(shè)的解為,則;設(shè)的解為,則.故,.故,得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及根據(jù)函數(shù)的單調(diào)性與最值求解參數(shù)值的問(wèn)題.同時(shí)也考查了構(gòu)造函數(shù)結(jié)合前問(wèn)的結(jié)論證明不等式的方法.屬于難題.19、(1),;(2),證明見(jiàn)解析【解析】
(1)利用已知條件建立等量關(guān)系求出數(shù)列的通項(xiàng)公式.(2)利用裂項(xiàng)相消法求出數(shù)列的和,進(jìn)一步利用放縮法求出結(jié)論.【詳解】(1),,得是公比為的等比數(shù)列,,,當(dāng)時(shí),數(shù)列的前項(xiàng)積為,則,兩式相除得,得,又得,;(2),故.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,數(shù)列的前項(xiàng)和的應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.20、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫(huà)出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點(diǎn)軌跡為橢圓(),進(jìn)而求解;(Ⅱ)設(shè)直線方程為,點(diǎn)坐標(biāo)分別為,聯(lián)立直線與橢圓方程得,,分別由點(diǎn)斜式求得直線KA的方程為,令得,同理得,由結(jié)合韋達(dá)定理即可求解,而,當(dāng)重合交于點(diǎn)時(shí),可求最值;【詳解】(Ⅰ),所以點(diǎn)的軌跡是一個(gè)橢圓,且長(zhǎng)軸長(zhǎng),半焦距,所以,軌跡的方程為.(Ⅱ)當(dāng)直線的斜率為0時(shí),與曲線無(wú)交點(diǎn).當(dāng)直線的斜率不為0時(shí),設(shè)過(guò)點(diǎn)的直線方程為,點(diǎn)坐標(biāo)分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點(diǎn)為.不妨設(shè)點(diǎn)在點(diǎn)的上方,則.【點(diǎn)睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點(diǎn)定值問(wèn)題,屬于中檔題21、(1)證明見(jiàn)解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設(shè)AC、BD交點(diǎn)為O,則以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系,可用空間向量法解決問(wèn)題.(1)只要證明=0即可證明垂直;(2)設(shè)=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補(bǔ)可求得.試題解析:(1)連結(jié)AC、BD交于點(diǎn)O,以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系.因?yàn)镻A=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因?yàn)椋?,所以MN⊥AD(2)解:因?yàn)镸在PA上,可設(shè)=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設(shè)平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因?yàn)槠矫鍭BD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點(diǎn):用空間向量法證垂直、求二面角.22、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),連接
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025產(chǎn)品代理合同
- 2025年兩個(gè)人的借款合同(三篇)
- 2025年iso質(zhì)量認(rèn)證咨詢合同模板(三篇)
- 2025年個(gè)人借款合同書(shū)范本短期(2篇)
- 變頻器設(shè)備采購(gòu)合同
- 商鋪?zhàn)赓U合同書(shū)樣本
- 綠色辦公照明的智能化發(fā)展趨勢(shì)
- 課題申報(bào)參考:勞務(wù)派遣用工模式下的制造業(yè)勞動(dòng)體制研究
- 跨界學(xué)習(xí)提升商業(yè)領(lǐng)域客戶滿意度的服務(wù)策略
- 設(shè)備維修人員培訓(xùn)在實(shí)驗(yàn)室維護(hù)中的作用
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書(shū)范文
- 中國(guó)高血壓防治指南(2024年修訂版)要點(diǎn)解讀
- 2024-2030年中國(guó)光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預(yù)測(cè)分析研究報(bào)告
- 湖南省岳陽(yáng)市岳陽(yáng)樓區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書(shū)
- 杜仲葉藥理作用及臨床應(yīng)用研究進(jìn)展
- 4S店售后服務(wù)6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應(yīng)用
- 無(wú)線廣播行業(yè)現(xiàn)狀分析
- 漢語(yǔ)言溝通發(fā)展量表(長(zhǎng)表)-詞匯及手勢(shì)(8-16月齡)
- 高速公路相關(guān)知識(shí)講座
評(píng)論
0/150
提交評(píng)論