版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023屆甘肅省慶陽長慶中學(xué)高三4月第二次模擬考試數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知冪函數(shù)的圖象過點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.2.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿足,則等于()A.2 B. C. D.3.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.4.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.5.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.6.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.7.已知集合,集合,那么等于()A. B. C. D.8.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測繪,將畫中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線,兩條切線交于點(diǎn),測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.9.如果,那么下列不等式成立的是()A. B.C. D.10.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.011.已知復(fù)數(shù),,則()A. B. C. D.12.已知正三角形的邊長為2,為邊的中點(diǎn),、分別為邊、上的動(dòng)點(diǎn),并滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,點(diǎn),在曲線上,且以為直徑的圓的方程是.則_______.14.已知函數(shù),若恒成立,則的取值范圍是___________.15.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.16.已知,滿足約束條件則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時(shí)x的取值范圍;(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.18.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時(shí),對任意,不等式恒成立,求實(shí)數(shù)的最小值.19.(12分)已知函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)若函數(shù)的值域?yàn)锳,且,求a的取值范圍.20.(12分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.21.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).證明:;設(shè),點(diǎn)M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.22.(10分)數(shù)列滿足,是與的等差中項(xiàng).(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運(yùn)算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.2.D【解析】
選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.3.D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.4.A【解析】
由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.5.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.6.C【解析】
先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題7.A【解析】
求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.8.A【解析】
由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.9.D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.10.B【解析】
根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.11.B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問題.12.A【解析】
建立平面直角坐標(biāo)系,求出直線,設(shè)出點(diǎn),通過,找出與的關(guān)系.通過數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識(shí),求出其值域,即為的取值范圍.【詳解】以D為原點(diǎn),BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點(diǎn),所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點(diǎn)睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長公式即可求解.【詳解】因?yàn)槭菆A的直徑,必過圓心點(diǎn),設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,故兩式相減,可得(因?yàn)槭堑闹悬c(diǎn)),即聯(lián)立直線與的方程:又,即,即又因?yàn)?,則有即∴.故答案為:【點(diǎn)睛】本題考查了直線與圓錐曲線的位置關(guān)系、弦長公式,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于中檔題.14.【解析】
求導(dǎo)得到,討論和兩種情況,計(jì)算時(shí),函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案?!驹斀狻恳?yàn)?,所以,因?yàn)?,所?當(dāng),即時(shí),,則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時(shí),因?yàn)樵谏蠁握{(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點(diǎn)睛】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解題的關(guān)鍵.15.【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.16.1【解析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時(shí),取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)先根據(jù)向量的數(shù)量積的運(yùn)算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據(jù)正弦函數(shù)的性質(zhì)即可求出答案;(2)先求出C的大小,再根據(jù)余弦定理和基本不等式,即可求出,根據(jù)三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時(shí),,取最小值,所以,所求的取值集合是;(2)由,得,因?yàn)?,所以,所以?在中,由余弦定理,得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以的面積,因此的面積的最大值為.【點(diǎn)睛】本題考查了向量的數(shù)量積的運(yùn)算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.18.(1)故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號(hào)判斷單調(diào)性.(Ⅱ)分析題意可得對任意,恒成立,構(gòu)造函數(shù),則有對任意,恒成立,然后通過求函數(shù)的最值可得所求.試題解析:(I)由題意得,,∴.當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),令,解得;令,解得.故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(II)由題意知.,當(dāng)時(shí),函數(shù)單調(diào)遞增.不妨設(shè),又函數(shù)單調(diào)遞減,所以原問題等價(jià)于:當(dāng)時(shí),對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調(diào)遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調(diào)遞增,所以函數(shù)在上的最大值為.由,解得.故實(shí)數(shù)的最小值為.19.(1)或(2)【解析】
(1)分類討論去絕對值即可;(2)根據(jù)條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關(guān)于a的不等式,然后求出a的取值范圍.【詳解】(1)當(dāng)a=﹣1時(shí),f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當(dāng)x≤﹣1時(shí),原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當(dāng)時(shí),原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時(shí)不等式無解;當(dāng)時(shí),原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當(dāng)a<﹣3時(shí),,∴函數(shù)g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當(dāng)a≥﹣3時(shí),,∴函數(shù)g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]?A,∴,∴a≥﹣1,綜上,a的取值范圍為(﹣∞,﹣5]∪[﹣1,+∞).【點(diǎn)睛】本題考查了絕對值不等式的解法和利用集合間的關(guān)于求參數(shù)的取值范圍,考查了轉(zhuǎn)化思想和分類討論思想,屬于中檔題.20.(1);(2)【解析】
(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【點(diǎn)睛】本題考查了正弦定理在邊角轉(zhuǎn)化中的應(yīng)用,正弦差角公式的應(yīng)用,三角形面積公式求法,屬于基礎(chǔ)題.21.(1)見解析;(2)【解析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由空間向量法和異面直線與所成角的余弦值為,得點(diǎn)M的坐標(biāo),從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級數(shù)學(xué)下冊完整教案
- 三年級上冊全冊教案
- 高一信息技術(shù)教案(全套)
- 能源項(xiàng)目風(fēng)險(xiǎn)管理 課件 2-能源項(xiàng)目風(fēng)險(xiǎn)規(guī)劃管理
- 高一化學(xué)成長訓(xùn)練:第一單元核外電子排布與周期律
- 2024屆四川巫溪縣白馬中學(xué)高考沖刺押題(最后一卷)化學(xué)試卷含解析
- 2024高中語文第三單元因聲求氣吟詠詩韻第14課自主賞析閣夜課時(shí)作業(yè)含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考地理一輪復(fù)習(xí)第二部分人文地理-重在運(yùn)用第二章城市與城市化第18講城市內(nèi)部空間結(jié)構(gòu)與不同等級城市的服務(wù)功學(xué)案新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第3章自然界及材料家族中的元素第3講硫及其化合物學(xué)案魯科版
- 2025高考數(shù)學(xué)考點(diǎn)剖析精創(chuàng)專題卷四-平面向量【含答案】
- 航空二類人員準(zhǔn)入考核試題題庫及答案
- 2023年版人教版高一必修第一冊物理測試題(含答案)
- 新課標(biāo)背景下:英語學(xué)科“教-學(xué)-評”一體化的設(shè)計(jì)與實(shí)施
- (2022年整理)人民幣含硬幣教具正反面完美打印版
- 保險(xiǎn)公估作業(yè)指導(dǎo)書x
- 新人教版八年級數(shù)學(xué)下冊 第18章平行四邊形 導(dǎo)學(xué)案
- 《生理心理學(xué)實(shí)驗(yàn)實(shí)訓(xùn)》指導(dǎo)書-
- 成果s7-200smart系統(tǒng)手冊
- 教練技術(shù)三階段講義
- GB/T 23799-2021車用甲醇汽油(M85)
- 醫(yī)院心電監(jiān)護(hù)術(shù)考核表
評論
0/150
提交評論