新高考數(shù)學(xué)一輪復(fù)習(xí)考點精講練+易錯題型第20講 導(dǎo)數(shù)的綜合應(yīng)用(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點精講練+易錯題型第20講 導(dǎo)數(shù)的綜合應(yīng)用(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點精講練+易錯題型第20講 導(dǎo)數(shù)的綜合應(yīng)用(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點精講練+易錯題型第20講 導(dǎo)數(shù)的綜合應(yīng)用(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點精講練+易錯題型第20講 導(dǎo)數(shù)的綜合應(yīng)用(解析版)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

導(dǎo)數(shù)的綜合應(yīng)用【基礎(chǔ)知識網(wǎng)絡(luò)圖】導(dǎo)數(shù)的應(yīng)用極值與最值問題函數(shù)的單調(diào)性問題切線斜率、方程切線斜率、方程【基礎(chǔ)知識全通關(guān)】1、求切線方程的一般方法(1)求出函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù)SKIPIF1<0;(2)利用直線的點斜式得切線方程。求切線方程,首先要判斷所給點是否在曲線上.若在曲線上,可用上法求解;若不在曲線上,可設(shè)出切點,寫出切線方程,結(jié)合已知條件求出切點坐標(biāo),從而得方程.2、判定函數(shù)的單調(diào)性(1)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)可導(dǎo),則當(dāng)SKIPIF1<0時,y=f(x)在相應(yīng)區(qū)間上為增函數(shù);當(dāng)SKIPIF1<0時,y=f(x)在相應(yīng)區(qū)間上為減函數(shù);當(dāng)恒有SKIPIF1<0時,y=f(x)在相應(yīng)區(qū)間上為常數(shù)函數(shù)。①在區(qū)間(a,b)內(nèi),SKIPIF1<0是f(x)在(a,b)內(nèi)單調(diào)遞增的充分不必要條件!例如:SKIPIF1<0而f(x)在R上遞增。②學(xué)生易誤認為只要有點使SKIPIF1<0,則f(x)在(a,b)上是常函數(shù),要指出個別導(dǎo)數(shù)為零不影響函數(shù)的單調(diào)性,同時要強調(diào)只有在這個區(qū)間內(nèi)恒有SKIPIF1<0,這個函數(shù)y=f(x)在這個區(qū)間上才為常數(shù)函數(shù)。③要關(guān)注導(dǎo)函數(shù)圖象與原函數(shù)圖象間關(guān)系。(2)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的基本步驟①確定函數(shù)f(x)的定義域;②求導(dǎo)數(shù)SKIPIF1<0;③在定義域內(nèi)解不等式SKIPIF1<0;④確定f(x)的單調(diào)區(qū)間。函數(shù)f(x)在區(qū)間(a,b)內(nèi)是單調(diào)遞增或遞減的判定可依據(jù)單調(diào)性定義也可利用導(dǎo)數(shù),應(yīng)根據(jù)問題的具體條件適當(dāng)選用方法,有時須將區(qū)間(a,b)劃分成若干小區(qū)間,在每個小區(qū)間上分別判定單調(diào)性。3、函數(shù)的極值(1)極值的概念一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,①如果對于x0附近的所有點,都有:f(x)<f(x0),稱f(x0)為函數(shù)f(x)的一個極大值,記作y極大值=f(x0);②如果對于x0附近的所有點,都有:f(x)>f(x0),稱f(x0)為函數(shù)f(x)的—個極小值,記作y極小值=f(x0)。極大值與極小值統(tǒng)稱極值。在定義中,取得極值的點稱為極值點,極值點是自變量的值,極值指的是函數(shù)值。①在函數(shù)的極值定義中,一定要明確函數(shù)y=f(x)在x=x0及其附近有定義,否則無從比較。②函數(shù)的極值是就函數(shù)在某一點附近的小區(qū)間而言的,是一個局部概念,在函數(shù)的整個定義域內(nèi)可能有多個極值,也可能無極值。由定義,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是最大或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)最大或最小。③極大值與極小值之間無確定的大小關(guān)系。即一個函數(shù)的極大值未必大于極小值。極小值不一定是整個定義區(qū)間上的最小值。④函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點。而使函數(shù)取得最大值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。⑤連續(xù)函數(shù)的某一點是極值點的充要條件是該點兩側(cè)的導(dǎo)數(shù)異號。我們主要討論可導(dǎo)函數(shù)的極值問題,但是函數(shù)的不可導(dǎo)點也可能是極值點。如某些間斷點也可能是極值點,再如y=|x|,x=0。⑥可導(dǎo)函數(shù)在某點取得極值,則該點的導(dǎo)數(shù)一定為零,反之不成立。在函數(shù)取得極值處,如果曲線有切線的話,則切線是水平的,從而有SKIPIF1<0。但反過來不一定。如函數(shù)y=x3,在x=0處,曲線的切線是水平的,但這點的函數(shù)值既不比它附近的點的函數(shù)值大,也不比它附近的點的函數(shù)值小。(2)求極值的步驟①確定函數(shù)的定義域;②求導(dǎo)數(shù);③求方程SKIPIF1<0的根;④檢查SKIPIF1<0在方程根左右的值的符號,如果左正右負,則f(x)在這個根處取得極大值;如果左負右正,則f(x)在這個根處取得極小值。(最好通過列表法)函數(shù)極值只反映函數(shù)在某點附近值的大小情況。在某區(qū)間上函數(shù)的極值可能有若干個,而且極小值未必小于極大值。f'(x0)=0僅是函數(shù)f(x)在點x0處有極值的必要條件,點x0是f(x)的極值點,當(dāng)且僅當(dāng)在x0的左右f'(x)的符號產(chǎn)生變化。4、函數(shù)的最值函數(shù)的最值表示函數(shù)在定義域內(nèi)值的整體情況。連續(xù)函數(shù)f(x)在閉區(qū)間[a,b]上必有一個最大值和一個最小值,但是最值點可以不唯一;但在開區(qū)間(a,b)內(nèi)連續(xù)的函數(shù)不一定有最大值和最小值。(1)最值與極值的區(qū)別與聯(lián)系:①函數(shù)最大值和最小值是比較整個定義域上的函數(shù)值得出的,是整個定義區(qū)間上的一個概念,而函數(shù)的極值則是比較極值點附近兩側(cè)的函數(shù)值而得出的,是局部的概念;②極值可以有多個,最大(小)值若存在只有一個;③極值只能在區(qū)間內(nèi)取得,不能在區(qū)間端點取得;而使函數(shù)取得最大值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。④有極值的函數(shù)不一定有最值,有最值的函數(shù)未必有極值,極值可能成為最值。(2)在區(qū)間[a,b]上求函數(shù)y=f(x)的最大與最小值的步驟①求函數(shù)y=f(x)在(a,b)內(nèi)的導(dǎo)數(shù)②求函數(shù)y=f(x)在(a,b)內(nèi)的極值③將函數(shù)y=f(x)在(a,b)內(nèi)的極值與區(qū)間兩端的函數(shù)值f(a),f(b)比較,其中最大的一個為最大值,最小的一個為最小值。①函數(shù)的最值表示函數(shù)在定義域內(nèi)值的整體情況。連續(xù)函數(shù)f(x)在閉區(qū)間[a,b]上必有一個最大值和一個最小值,但是最值點可以不唯一。②在實際問題中,要由實際問題的背景構(gòu)造出相應(yīng)的函數(shù)關(guān)系式y(tǒng)=f(x),并注明其定義域,當(dāng)SKIPIF1<0在定義域內(nèi)只有一個解時,并且最值一定存在,則此點即為函數(shù)f(x)的最值點。【考點研習(xí)一點通】考點01切線問題1、求曲線SKIPIF1<0的分別滿足下列條件的切線:(1)在點SKIPIF1<0的切線;(2)過點SKIPIF1<0的切線;【解析】SKIPIF1<0(1)SKIPIF1<0時,在點SKIPIF1<0的切線的切線的斜率SKIPIF1<0,∴在點SKIPIF1<0的切線為SKIPIF1<0,即SKIPIF1<0.(2)當(dāng)切點為點SKIPIF1<0時,切線為SKIPIF1<0當(dāng)切點不是點SKIPIF1<0時,設(shè)切點為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去)∴切點為SKIPIF1<0的切線為SKIPIF1<0,即SKIPIF1<0,故過點SKIPIF1<0的切線為SKIPIF1<0或SKIPIF1<0.【變式1-1】已知曲線SKIPIF1<0,曲線上哪一點處切線與直線y=-2x+3垂直,并寫出這一點的切線方程?!窘馕觥俊逽KIPIF1<0,令SKIPIF1<0,得x=4, 將x=4代入SKIPIF1<0中得y=5∴切點坐標(biāo)是(4,5),∴切線方程為:SKIPIF1<0.即:x-2y+6=0?!咀兪?-2】設(shè)函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0相切于點(1,-11),求a,b的值.【解析】SKIPIF1<0∵SKIPIF1<0的圖象與直線SKIPIF1<0相切于點(1,-11).∴SKIPIF1<0,即SKIPIF1<0解之得a=1,b=-3.【考點易錯】1、已知函數(shù)SKIPIF1<0.(Ⅰ)求曲線SKIPIF1<0的斜率為1的切線方程;(Ⅱ)當(dāng)SKIPIF1<0時,求證:SKIPIF1<0;(Ⅲ)設(shè)SKIPIF1<0,記SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為M(a).當(dāng)M(a)最小時,求a的值.【解析】(Ⅰ)由SKIPIF1<0得SKIPIF1<0.令SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0的斜率為1的切線方程是SKIPIF1<0與SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0.(Ⅱ)令SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0.令SKIPIF1<0得SKIPIF1<0或SKIPIF1<0.SKIPIF1<0的情況如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0的最小值為SKIPIF1<0,最大值為SKIPIF1<0.故SKIPIF1<0,即SKIPIF1<0.(Ⅲ)由(Ⅱ)知,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.綜上,當(dāng)SKIPIF1<0最小時,SKIPIF1<0.2、設(shè)函數(shù)SKIPIF1<0、SKIPIF1<0為f(x)的導(dǎo)函數(shù).(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和SKIPIF1<0的零點均在集合SKIPIF1<0中,求f(x)的極小值;(3)若SKIPIF1<0,且f(x)的極大值為M,求證:M≤SKIPIF1<0.【解析】(1)因為SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.因為SKIPIF1<0都在集合SKIPIF1<0中,且SKIPIF1<0,所以SKIPIF1<0.此時SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<01SKIPIF1<0SKIPIF1<0+0–0+SKIPIF1<0SKIPIF1<0極大值SKIPIF1<0極小值SKIPIF1<0所以SKIPIF1<0的極小值為SKIPIF1<0.(3)因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0有2個不同的零點,設(shè)為SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0.列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0+0–0+SKIPIF1<0SKIPIF1<0極大值SKIPIF1<0極小值SKIPIF1<0所以SKIPIF1<0的極大值SKIPIF1<0.解法一:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.因此SKIPIF1<0.解法二:因為SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0.列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0+0–SKIPIF1<0SKIPIF1<0極大值SKIPIF1<0所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得極大值,且是最大值,故SKIPIF1<0.所以當(dāng)SKIPIF1<0時,SKIPIF1<0,因此SKIPIF1<0.3、已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(Ⅰ)當(dāng)SKIPIF1<0時,(i)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(ii)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間和極值;(Ⅱ)當(dāng)SKIPIF1<0時,求證:對任意的SKIPIF1<0,且SKIPIF1<0,有SKIPIF1<0.【解析】(Ⅰ)(i)當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0.可得SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(ii)依題意,SKIPIF1<0.從而可得SKIPIF1<0,整理可得SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0變化時,SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<01SKIPIF1<0SKIPIF1<0-0+SKIPIF1<0↘極小值↗所以,函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;SKIPIF1<0的極小值為SKIPIF1<0,無極大值.(Ⅱ)證明:由SKIPIF1<0,得SKIPIF1<0.對任意的SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.①令SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,由此可得SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0.②由(Ⅰ)(ii)可知,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.③由①②③可得SKIPIF1<0.所以,當(dāng)SKIPIF1<0時,對任意的SKIPIF1<0,且SKIPIF1<0,有SKIPIF1<0.4、已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求曲線y=f(x)在點(1,f(1))處的切線與兩坐標(biāo)軸圍成的三角形的面積;(2)若f(x)≥1,求a的取值范圍.【解析】SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.直線SKIPIF1<0在SKIPIF1<0軸,SKIPIF1<0軸上的截距分別為SKIPIF1<0,SKIPIF1<0.因此所求三角形的面積為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值,最小值為SKIPIF1<0,從而SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.【鞏固提升】1、已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,SKIPIF1<0.SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0.故選C.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,易錯點在于忽視函數(shù)的定義域,屬于中檔題.2、已知函數(shù)SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則曲線SKIPIF1<0在SKIPIF1<0處的切線方程為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.故選A.【點睛】本小題主要考查根據(jù)函數(shù)奇偶性求函數(shù)解析式,考查利用導(dǎo)數(shù)求切線方程,屬于基礎(chǔ)題.3、函數(shù)SKIPIF1<0的圖象大致是A. B.C. D.【答案】B【解析】函數(shù)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0的兩個極值點為SKIPIF1<0,故排除AD,且當(dāng)SKIPIF1<0時,SKIPIF1<0恒為正,排除C,即只有B選項符合要求,故選B.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)圖像,導(dǎo)函數(shù)與函數(shù)圖像的關(guān)系應(yīng)用,屬于基礎(chǔ)題.4、已知函數(shù)SKIPIF1<0.則下面結(jié)論正確的是A.SKIPIF1<0是奇函數(shù) B.SKIPIF1<0在SKIPIF1<0上為增函數(shù)C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】BCD【解析】對于A選項,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0為偶函數(shù),A選項錯誤;對于B選項,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),B選項正確;對于C選項,當(dāng)SKIPIF1<0時,由基本不等式可得SKIPIF1<0,由于函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),此時SKIPIF1<0,由于函數(shù)SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0.綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0,C選項正確;對于D選項,由于函數(shù)SKIPIF1<0為偶函數(shù),由SKIPIF1<0得SKIPIF1<0,由于函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則SKIPIF1<0,解得SKIPIF1<0,D選項正確.故選BCD.【點睛】本題考查函數(shù)的奇偶性、單調(diào)性的判斷,同時也考查了函數(shù)不等式的求解,考查計算能力與推理能力,屬于中等題.5、函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程為__________.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以切線方程為SKIPIF1<0,即SKIPIF1<0故答案為SKIPIF1<0.【點睛】本題考查的是導(dǎo)數(shù)的幾何意義,較簡單.6、若曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0__________【答案】SKIPIF1<0【解析】將SKIPIF1<0代入SKIPIF1<0,得切點為SKIPIF1<0,SKIPIF1<0SKIPIF1<0①,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0②.聯(lián)立①②解得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故答案為SKIPIF1<0.【點睛】本題考查導(dǎo)數(shù)的幾何意義和切線方程的求法,考查邏輯推理能力和運算能力,屬于基礎(chǔ)題.7、函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0.故答案為SKIPIF1<0.【點睛】本題考查根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.8、已知函數(shù)SKIPIF1<0對于任意SKIPIF1<0,均滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0(其中SKIPIF1<0為自然對數(shù)的底數(shù)),若存在實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0知SKIPIF1<0關(guān)于SKIPIF1<0對稱,如圖,因此SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,由題意知SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.故選D.【點睛】本題考查導(dǎo)數(shù),函數(shù)性質(zhì),函數(shù)圖象的綜合應(yīng)用,重點考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,最值,數(shù)形結(jié)合分析問題的能力,函數(shù)與方程思想的應(yīng)用,屬于中檔偏難題型,本題的關(guān)鍵是轉(zhuǎn)化SKIPIF1<0,并根據(jù)數(shù)形結(jié)合得到條件SKIPIF1<0.9、已知函數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為A.2 B.3 C.4 D.6【答案】C【解析】SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.SKIPIF1<0SKIPIF1<0在SKIPIF1<0處取得極大值,極大值為SKIPIF1<0;在SKIPIF1<0處取得極小值,極小值為SKIPIF1<0.令SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍)或SKIPIF1<0;令SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍)或SKIPIF1<0;SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0.故選C.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值問題,考查運算求解能力,求出函數(shù)的極大值與極小值是解決本題的關(guān)鍵,屬于中檔題.10、已知函數(shù)SKIPIF1<0,若對任意的SKIPIF1<0在區(qū)間SKIPIF1<0上總存在唯一的零點,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上總存在唯一的零點,即SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0上僅有一個交點,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選B.【點睛】本題考查根據(jù)函數(shù)在區(qū)間內(nèi)的零點個數(shù)求解參數(shù)范圍的問題,涉及到恒成立思想的應(yīng)用;關(guān)鍵是能夠根據(jù)導(dǎo)數(shù)求得函數(shù)的單調(diào)性,進而確定SKIPIF1<0與SKIPIF1<0的關(guān)系.11、已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有兩個零點,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)a=1時,f(x)=ex–x–2,則SKIPIF1<0=ex–1.當(dāng)x<0時,SKIPIF1<0<0;當(dāng)x>0時,SKIPIF1<0>0.所以f(x)在(–∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增.(2)SKIPIF1<0=ex–a.當(dāng)a≤0時,SKIPIF1<0>0,所以f(x)在(–∞,+∞)單調(diào)遞增,故f(x)至多存在1個零點,不合題意.當(dāng)a>0時,由SKIPIF1<0=0可得x=lna.當(dāng)x∈(–∞,lna)時,SKIPIF1<0<0;當(dāng)x∈(lna,+∞)時,SKIPIF1<0>0.所以f(x)在(–∞,lna)單調(diào)遞減,在(lna,+∞)單調(diào)遞增,故當(dāng)x=lna時,f(x)取得最小值,最小值為f(lna)=–a(1+lna).(i)若0≤a≤SKIPIF1<0,則f(lna)≥0,f(x)在(–∞,+∞)至多存在1個零點,不合題意.(ii)若a>SKIPIF1<0,則f(lna)<0.由于f(–2)=e–2>0,所以f(x)在(–∞,lna)存在唯一零點.由(1)知,當(dāng)x>2時,ex–x–2>0,所以當(dāng)x>4且x>2ln(2a)時,SKIPIF1<0.故f(x)在(lna,+∞)存在唯一零點,從而f(x)在(–∞,+∞)有兩個零點.綜上,a的取值范圍是(SKIPIF1<0,+∞).【點睛】本題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)零點個數(shù)求參數(shù)的取值范圍,在解題的過程中,也可以利用數(shù)形結(jié)合,將問題轉(zhuǎn)化為曲線SKIPIF1<0和直線SKIPIF1<0有兩個交點,利用過點SKIPIF1<0的曲線SKIPIF1<0的切線斜率,結(jié)合圖形求得結(jié)果.12、已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有三個零點,求SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0.當(dāng)k=0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增;當(dāng)k<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增.當(dāng)k>0時,令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.(2)由(1)知,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0不可能有三個零點.當(dāng)k>0時,SKIPIF1<0為SKIPIF1<0的極大值點,SKIPIF1<0為SKIPIF1<0的極小值點.此時,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.根據(jù)SKIPIF1<0的單調(diào)性,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0有三個零點,解得SKIPIF1<0.因此k的取值范圍為SKIPIF1<0.【點晴】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及已知零點個數(shù)求參數(shù)的范圍問題,考查學(xué)生邏輯推理能力、數(shù)學(xué)運算能力,是一道中檔題.13、已知函數(shù)SKIPIF1<0.(Ⅰ)求曲線SKIPIF1<0的斜率等于SKIPIF1<0的切線方程;(Ⅱ)設(shè)曲線SKIPIF1<0在點SKIPIF1<0處的切線與坐標(biāo)軸圍成的三角形的面積為SKIPIF1<0,求SKIPIF1<0的最小值.【解析】(Ⅰ)因為SKIPIF1<0,所以SKIPIF1<0,設(shè)切點為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以切點為SKIPIF1<0,由點斜式可得切線方程:SKIPIF1<0,即SKIPIF1<0.(Ⅱ)顯然SKIPIF1<0,因為SKIPIF1<0在點SKIPIF1<0處的切線方程為:SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,不妨設(shè)SKIPIF1<0SKIPIF1<0時,結(jié)果一樣SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0時,SKIPIF1<0取得極小值,也是最小值為SKIPIF1<0.【點睛】本題考查了利用導(dǎo)數(shù)的幾何意義求切線方程,考查了利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題.14、已知SKIPIF1<0,函數(shù)SKIPIF1<0,其中e=2.71828…是自然對數(shù)的底數(shù).(Ⅰ)證明:函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點;(Ⅱ)記x0為函數(shù)SKIPIF1<0在SKIPIF1<0上的零點,證明:(ⅰ)SKIPIF1<0;(ⅱ)SKIPIF1<0.【解析】(Ⅰ)因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在零點.因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)以SKIPIF1<0在SKIPIF1<0上有唯一零點.(Ⅱ)(ⅰ)令SKIPIF1<0,SKIPIF1<0,由(Ⅰ)知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,因此當(dāng)SKIPIF1<0時,SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0.綜上,SKIPIF1<0.(ⅱ)令SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,故函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,因此SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0.15、已知關(guān)于x的函數(shù)SKIPIF1<0與SKIPIF1<0在區(qū)間D上恒有SKIPIF1<0.(1)若SKIPIF1<0,求h(x)的表達式;(2)若SKIPIF1<0,求k的取值范圍;(3)若SKIPIF1<0SKIPIF1<0求證:SKIPIF1<0.【解析】(1)由條件SKIPIF1<0,得SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,此式對一切SKIPIF1<0恒成立,所以SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0恒成立,所以SKIPIF1<0.(2)SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0.則SKIPIF1<0恒成立,所以當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立.另一方面,SKIPIF1<0恒成立,即SKIPIF1<0恒成立,也即SKIPIF1<0恒成立.因為SKIPIF1<0,對稱軸為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.因此,k的取值范圍是SKIPIF1<0(3)①當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,整理得SKIPIF1<0令SKIPIF1<0則SKIPIF1<0.記SKIPIF1<0則SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0,即SKIPIF1<0.所以不等式SKIPIF1<0有解,設(shè)解為SKIPIF1<0,因此SKIPIF1<0.②當(dāng)SKIPIF1<0時,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0是減函數(shù);當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0是增函數(shù).SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0.(或證:SKIPIF1<0.)則SKIPIF1<0,因此SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.③當(dāng)SKIPIF1<0時,因為SKIPIF1<0,SKIPIF1<0均為偶函數(shù),因此SKIPIF1<0也成立.綜上所述,SKIPIF1<0.【點睛】本小題主要考查利用的導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,屬于難題.16、已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0處的切線方程:(2)已知實數(shù)SKIPIF1<0時,求證:函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0:SKIPIF1<0有3個交點.【解析】(1)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處的切線方程SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論