![2025屆浙江省紹興第一中學高考數(shù)學一模試卷含解析_第1頁](http://file4.renrendoc.com/view12/M07/12/0E/wKhkGWdF9puACZhQAAHXXsVDTS0849.jpg)
![2025屆浙江省紹興第一中學高考數(shù)學一模試卷含解析_第2頁](http://file4.renrendoc.com/view12/M07/12/0E/wKhkGWdF9puACZhQAAHXXsVDTS08492.jpg)
![2025屆浙江省紹興第一中學高考數(shù)學一模試卷含解析_第3頁](http://file4.renrendoc.com/view12/M07/12/0E/wKhkGWdF9puACZhQAAHXXsVDTS08493.jpg)
![2025屆浙江省紹興第一中學高考數(shù)學一模試卷含解析_第4頁](http://file4.renrendoc.com/view12/M07/12/0E/wKhkGWdF9puACZhQAAHXXsVDTS08494.jpg)
![2025屆浙江省紹興第一中學高考數(shù)學一模試卷含解析_第5頁](http://file4.renrendoc.com/view12/M07/12/0E/wKhkGWdF9puACZhQAAHXXsVDTS08495.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省紹興第一中學高考數(shù)學一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-322.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③3.設,滿足約束條件,則的最大值是()A. B. C. D.4.設復數(shù)滿足,則()A.1 B.-1 C. D.5.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.6.已知集合,集合,則().A. B.C. D.7.已知,,,,則()A. B. C. D.8.已知數(shù)列中,,且當為奇數(shù)時,;當為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.9.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.若等差數(shù)列的前項和為,且,,則的值為().A.21 B.63 C.13 D.8411.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.2512.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.14.已知函數(shù)為奇函數(shù),則______.15.已知全集為R,集合,則___________.16.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當時,要使恒成立,求實數(shù)的取值范圍.18.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.19.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.20.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.21.(12分)表示,中的最大值,如,己知函數(shù),.(1)設,求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.22.(10分)已知函數(shù).(1)當時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,為的導函數(shù),設,求的取值范圍,并求取到最小值時所對應的的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應用能快速求得結(jié)果.2、B【解析】
由題意,可設直線的方程為,利用韋達定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進而判斷第二個結(jié)論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結(jié)論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.3、D【解析】
作出不等式對應的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎題.4、B【解析】
利用復數(shù)的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數(shù)的四則運算,需掌握復數(shù)的運算法則,屬于基礎題.5、D【解析】
根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.6、A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.7、D【解析】
令,求,利用導數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設,利用導數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調(diào)遞增:∴,當,設,,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.8、A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進而可求解.【詳解】當為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A【點睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.9、C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關鍵.10、B【解析】
由已知結(jié)合等差數(shù)列的通項公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數(shù)列的通項公式及求和公式的簡單應用,屬于基礎題.11、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.12、A【解析】
先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.14、【解析】
利用奇函數(shù)的定義得出,結(jié)合對數(shù)的運算性質(zhì)可求得實數(shù)的值.【詳解】由于函數(shù)為奇函數(shù),則,即,,整理得,解得.當時,真數(shù),不合乎題意;當時,,解不等式,解得或,此時函數(shù)的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.【點睛】本題考查利用函數(shù)的奇偶性求參數(shù),考查了函數(shù)奇偶性的定義和對數(shù)運算性質(zhì)的應用,考查計算能力,屬于中等題.15、【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.16、【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設,.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質(zhì)的應用,意在考查學生的直觀想象能力,數(shù)學運算能力和邏輯推理能力,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)求函數(shù)的導函數(shù),即可求得切線的斜率,則切線方程得解;(Ⅱ)構(gòu)造函數(shù),對參數(shù)分類討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【詳解】(Ⅰ)當時,,則.所以.又,故所求切線方程為,即.(Ⅱ)依題意,得,即恒成立.令,則.①當時,因為,不合題意.②當時,令,得,,顯然.令,得或;令,得.所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.當時,,,所以,只需,所以,所以實數(shù)的取值范圍為.【點睛】本題考查利用導數(shù)的幾何意義求切線方程,以及利用導數(shù)研究恒成立問題,屬綜合中檔題.18、(1)乙的技術更好,見解析(2)①,;②【解析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產(chǎn)一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.【點睛】本題考查離散型隨機變量的分布列和期望,考查數(shù)列遞推關系的應用,是一道難度較大的題目.19、(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】
(1)由題可得,結(jié)合的范圍判斷的正負,即可求解;(2)結(jié)合導數(shù)及函數(shù)的零點的判定定理,分類討論進行求解【詳解】(1),①當時,,∴函數(shù)在內(nèi)單調(diào)遞增;②當時,令,解得或,當或時,,則單調(diào)遞增,當時,,則單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為(2)(Ⅰ)當時,所以在上無零點;(Ⅱ)當時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當時,,所以此時只需考慮函數(shù)在上零點的情況,因為,所以①當時,在上單調(diào)遞增。又,所以(?。┊敃r,在上無零點;(ⅱ)當時,,又,所以此時在上恰有一個零點;②當時,令,得,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,因為,,所以此時在上恰有一個零點,綜上,【點睛】本題考查利用導數(shù)求函數(shù)單調(diào)區(qū)間,考查利用導數(shù)處理零點個數(shù)問題,考查運算能力,考查分類討論思想20、(1)見解析(2)【解析】
(1)利用正弦定理求得,由此得到,結(jié)合證得平面,由此證得.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值,再轉(zhuǎn)化為正弦值.【詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標原點建立如圖所示的空間直角坐標系,,設平面的法向量為,由可得:,令,則,設平面的法向量為,由可得:,令,則,設二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.【點睛】本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構(gòu)造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結(jié)合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點,即在上零點的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立............................10分②若對恒成立,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聽評課記錄六年級數(shù)學
- 2022年新課標八年級上冊道德與法第四課 社會生活講道德 聽課評課記錄
- 五年級下冊數(shù)學聽評課記錄《1總復習:倍數(shù)和因數(shù)》人教新課標
- 華師大版數(shù)學八年級下冊《平行四邊形邊、角的性質(zhì)》聽評課記錄
- 數(shù)學聽評課記錄二年級下
- 《青銅器與甲骨文》名師聽課評課記錄(新部編人教版七年級上冊歷史)
- 新人教版七年級數(shù)學上冊2.2《 整式的加減》聽評課記錄
- 青島版數(shù)學八年級下冊《實數(shù)》聽評課記錄1
- 小學二年級口算題
- 鄉(xiāng)村振興銀企戰(zhàn)略合作協(xié)議書范本
- 2023九年級歷史下冊 第三單元 第一次世界大戰(zhàn)和戰(zhàn)后初期的世界第10課《凡爾賽條約》和《九國公約》教案 新人教版
- 骨髓穿刺課件
- 持續(xù)質(zhì)量改進項目匯報
- 2024版買賣二手車合同范本
- 2024中國保險發(fā)展報告-中南大風險管理研究中心.燕道數(shù)科
- 元素的用途完整版本
- 第15課 列強入侵與中國人民的反抗斗爭 教學設計-2023-2024學年中職高一上學期高教版(2023)中國歷史全一冊
- 建筑設計工程設計方案
- 供熱行業(yè)環(huán)境保護管理辦法
- (2024年)氣胸完整課件
- 七十歲換領證駕考三力測試答題
評論
0/150
提交評論